lakala GradientBoostedTrees
/**
* Created by lkl on 2017/12/6.
*/
import org.apache.spark.mllib.evaluation.BinaryClassificationMetrics
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.mllib.tree.GradientBoostedTrees
import org.apache.spark.mllib.tree.configuration.BoostingStrategy
import org.apache.spark.sql.hive.HiveContext
import org.apache.spark.{SparkConf, SparkContext}
import scala.collection.mutable.ArrayBuffer
object GradientBoostingClassificationForLK {
//http://blog.csdn.net/xubo245/article/details/51499643
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setAppName("GradientBoostingClassificationForLK")
val sc = new SparkContext(conf) // sc is an existing SparkContext.
val hc = new HiveContext(sc) if(args.length!=){
println("请输入参数:trainingData对应的库名、表名、模型运行时间")
System.exit()
} //分别传入库名、表名、对比效果路径
// val database = args(0)
// val table = args(1)
// val date = args(2)
//lkl_card_score.overdue_result_all_new_woe
val format = new java.text.SimpleDateFormat("yyyyMMdd")
val database ="lkl_card_score"
val table = "overdue_result_all_new_woe"
val date =format.format(new java.util.Date())
//提取数据集 RDD[LabeledPoint]
//val data = hc.sql(s"select * from $database.$table").map{ val data = hc.sql(s"select * from lkl_card_score.overdue_result_all_new_woe").map{
row =>
var arr = new ArrayBuffer[Double]()
//剔除label、contact字段
for(i <- until row.size){
if(row.isNullAt(i)){
arr += 0.0
}
else if(row.get(i).isInstanceOf[Int])
arr += row.getInt(i).toDouble
else if(row.get(i).isInstanceOf[Double])
arr += row.getDouble(i)
else if(row.get(i).isInstanceOf[Long])
arr += row.getLong(i).toDouble
else if(row.get(i).isInstanceOf[String])
arr += 0.0
}
LabeledPoint(row.getInt(), Vectors.dense(arr.toArray))
}
// Split the data into training and test sets (30% held out for testing)
val splits = data.randomSplit(Array(0.7, 0.3))
val (trainingData, testData) = (splits(), splits()) // Train a GradientBoostedTrees model.
// The defaultParams for Classification use LogLoss by default.
val boostingStrategy = BoostingStrategy.defaultParams("Classification")
boostingStrategy.setNumIterations() // Note: Use more iterations in practice.
boostingStrategy.treeStrategy.setNumClasses()
boostingStrategy.treeStrategy.setMaxDepth()
// Empty categoricalFeaturesInfo indicates all features are continuous.
//boostingStrategy.treeStrategy.setCategoricalFeaturesInfo(Map[Int, Int]()) val model = GradientBoostedTrees.train(trainingData, boostingStrategy) // Evaluate model on test instances and compute test error
val predictionAndLabels = testData.map { point =>
val prediction = model.predict(point.features)
(point.label, prediction)
} predictionAndLabels.map(x => {"predicts: "+x._1+"--> labels:"+x._2}).saveAsTextFile(s"hdfs://ns1/tmp/$date/predictionAndLabels")
//===================================================================
//使用BinaryClassificationMetrics评估模型
val metrics = new BinaryClassificationMetrics(predictionAndLabels) // Precision by threshold
val precision = metrics.precisionByThreshold
precision.map({case (t, p) =>
"Threshold: "+t+"Precision:"+p
}).saveAsTextFile(s"hdfs://ns1/tmp/$date/precision") // Recall by threshold
val recall = metrics.recallByThreshold
recall.map({case (t, r) =>
"Threshold: "+t+"Recall:"+r
}).saveAsTextFile(s"hdfs://ns1/tmp/$date/recall") //the beta factor in F-Measure computation.
val f1Score = metrics.fMeasureByThreshold
f1Score.map(x => {"Threshold: "+x._1+"--> F-score:"+x._2+"--> Beta = 1"})
.saveAsTextFile(s"hdfs://ns1/tmp/$date/f1Score") /**
* 如果要选择Threshold, 这三个指标中, 自然F1最为合适
* 求出最大的F1, 对应的threshold就是最佳的threshold
*/
/*val maxFMeasure = f1Score.select(max("F-Measure")).head().getDouble(0)
val bestThreshold = f1Score.where($"F-Measure" === maxFMeasure)
.select("threshold").head().getDouble(0)*/ // Precision-Recall Curve
val prc = metrics.pr
prc.map(x => {"Recall: " + x._1 + "--> Precision: "+x._2 }).saveAsTextFile(s"hdfs://ns1/tmp/$date/prc") // AUPRC,精度,召回曲线下的面积
val auPRC = metrics.areaUnderPR
sc.makeRDD(Seq("Area under precision-recall curve = " +auPRC)).saveAsTextFile(s"hdfs://ns1/tmp/$date/auPRC") //roc
val roc = metrics.roc
roc.map(x => {"FalsePositiveRate:" + x._1 + "--> Recall: " +x._2}).saveAsTextFile(s"hdfs://ns1/tmp/$date/roc") // AUC
val auROC = metrics.areaUnderROC
sc.makeRDD(Seq("Area under ROC = " + +auROC)).saveAsTextFile(s"hdfs://ns1/tmp/$date/auROC")
println("Area under ROC = " + auROC) val testErr = predictionAndLabels.filter(r => r._1 != r._2).count.toDouble / testData.count()
sc.makeRDD(Seq("Test Mean Squared Error = " + testErr)).saveAsTextFile(s"hdfs://ns1/tmp/$date/testErr")
sc.makeRDD(Seq("Learned regression tree model: " + model.toDebugString)).saveAsTextFile(s"hdfs://ns1/tmp/$date/GBDTclassification")
} }
lakala GradientBoostedTrees的更多相关文章
- lakala反欺诈建模实际应用代码GBDT监督学习
/** * Created by lkl on 2018/1/16. */ import org.apache.spark.mllib.evaluation.BinaryClassificationM ...
- lakala proportion轨迹分析代码
/** * Created by lkl on 2017/12/7. */ import breeze.numerics.abs import org.apache.spark.sql.SQLCont ...
- 决策树和基于决策树的集成方法(DT,RF,GBDT,XGBT)复习总结
摘要: 1.算法概述 2.算法推导 3.算法特性及优缺点 4.注意事项 5.实现和具体例子 内容: 1.算法概述 1.1 决策树(DT)是一种基本的分类和回归方法.在分类问题中它可以认为是if-the ...
- 《Spark 官方文档》机器学习库(MLlib)指南
spark-2.0.2 机器学习库(MLlib)指南 MLlib是Spark的机器学习(ML)库.旨在简化机器学习的工程实践工作,并方便扩展到更大规模.MLlib由一些通用的学习算法和工具组成,包括分 ...
- ORACLE11G常用函数
1 单值函数 1.1 日期函数 1.1.1 Round [舍入到最接近的日期](day:舍入到最接近的星期日) select sysdate S1, round(sysdate) S2 , round ...
- 决策树和基于决策树的集成方法(DT,RF,GBDT,XGB)复习总结
摘要: 1.算法概述 2.算法推导 3.算法特性及优缺点 4.注意事项 5.实现和具体例子 内容: 1.算法概述 1.1 决策树(DT)是一种基本的分类和回归方法.在分类问题中它可以认为是if-the ...
- MLlib--GBDT算法
转载请标明出处http://www.cnblogs.com/haozhengfei/p/8b9cb1875288d9f6cfc2f5a9b2f10eac.html GBDT算法 江湖传言:GBDT算法 ...
- spark MLlib Classification and regression 学习
二分类:SVMs,logistic regression,decision trees,random forests,gradient-boosted trees,naive Bayes 多分类: ...
- Oracle分析函数及常用函数: over(),rank()over()作用及用法--分区(分组)求和& 不连续/连续排名
(1) 函数: over()的作用及用法: -- 分区(分组)求和. sum() over( partition by column1 order by column2 )主要用来对某个字 ...
随机推荐
- 什么是POP3、SMTP和IMAP?
POP3 POP3是Post Office Protocol 3的简称,即邮局协议的第3个版本,它规定怎样将个人计算机连接到Internet的邮件服务器和下载电子邮件的电子协议.它是因特网电子邮件的第 ...
- ARKit从入门到精通(10)-ARKit让飞机绕着你飞起来
1.1-ARKit物体围绕相机旋转流程介绍 1.2-完整代码 1.3-代码下载地址 废话不多说,先看效果 其实是会一直围着你转圈的,只不过笔者不好意思暴露家里的场景,所以请读者朋友们见谅~ 由于是晚上 ...
- phpstorm设置断点过程
1.为php安装xdebug,方法在上一篇中有详细介绍 2.注意这个时候需要修改php.ini内容如下: [Xdebug]zend_extension_ts ="d:/wamp/php/ex ...
- CSS超过指定的宽度加省略号
/*table-layout:fixed 会使表格均等分*/ #TreeView1 table { width:290px; table-layout: fixed; } #TreeView1 td: ...
- 在分布式系统里看CAP定理
本文转自:http://zhuanlan.51cto.com/art/201703/534587.htm 计算机界有很多高大上又难于理解的术语,CAP就是其中之一, 什么一致性(Consistency ...
- mysql hive sql 进阶
场景: 说明.1.上面的数据是经过规整的数据,step是连续的,这个可以通过row_number实现.连续是必要的一个条件因为在计算第二个查询条件时依赖这个顺序,如果step不是数字字段可以截取然后转 ...
- 【微信小程序】下拉刷新真机测试无效
根据文档的描述,做上拉加载时直接实现页面的onReachBottom()函数即可.但是要做下拉刷新时,除了实现onPullDownRefresh()函数外,还必须要在app.json中配置开启enab ...
- mac下java环境变量配置
发现一个坑:最近发现有同事按照本文方式配置jdk环境变量一直不成功,后来发现他是使用了“Oh-My-Zsh”,配置文件的路径不是/etc/profile或~/.bash_profile,它有自己的配置 ...
- win10无法访问局域网共享文件?解决如此简单。。。。。
1 笔记本系统win10 X64企业版,其中一文件夹已设置为“共享”.本地帐号登录系统. 2 平板电脑系统win8.1 X64专业版,可以顺畅的访问笔记本的共享文件.微软帐号登录系统. 3 平板电脑系 ...
- Java编程的逻辑 (63) - 实用序列化: JSON/XML/MessagePack
本系列文章经补充和完善,已修订整理成书<Java编程的逻辑>,由机械工业出版社华章分社出版,于2018年1月上市热销,读者好评如潮!各大网店和书店有售,欢迎购买,京东自营链接:http:/ ...