题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4578

Problem Description
Yuanfang is puzzled with the question below: 
There are n integers, a1, a2, …, an. The initial values of them are 0. There are four kinds of operations.
Operation 1: Add c to each number between ax and ay inclusive. In other words, do transformation ak<---ak+c, k = x,x+1,…,y.
Operation 2: Multiply c to each number between ax and ay inclusive. In other words, do transformation ak<---ak×c, k = x,x+1,…,y.
Operation 3: Change the numbers between ax and ay to c, inclusive. In other words, do transformation ak<---c, k = x,x+1,…,y.
Operation 4: Get the sum of p power among the numbers between ax and ay inclusive. In other words, get the result of axp+ax+1p+…+ay p.
Yuanfang has no idea of how to do it. So he wants to ask you to help him. 
 
Input
There are no more than 10 test cases.
For each case, the first line contains two numbers n and m, meaning that there are n integers and m operations. 1 <= n, m <= 100,000.
Each the following m lines contains an operation. Operation 1 to 3 is in this format: "1 x y c" or "2 x y c" or "3 x y c". Operation 4 is in this format: "4 x y p". (1 <= x <= y <= n, 1 <= c <= 10,000, 1 <= p <= 3)
The input ends with 0 0.
 
Output
For each operation 4, output a single integer in one line representing the result. The answer may be quite large. You just need to calculate the remainder of the answer when divided by 10007.
 
Sample Input
5 5
3 3 5 7
1 2 4 4
4 1 5 2
2 2 5 8
4 3 5 3
0 0
 
Sample Output
307
7489

题意:

给出一个序列,有下列操作:

  1. 对区间[x,y]全部加上c
  2. 对区间[x,y]全部乘上c
  3. 将区间[x,y]全部改成c
  4. 查询区间[x,y]的p次方和

题解:

加强版的线段树,需要三个lazy标记,一个add表示加法标记,一个mul表示乘法标记,一个alt表示修改标记,

同时由于p=1,2,3,所以可以有三个val值:sum1表示一次方和,sum2表示平方和,sum3表示立方和,

然后我们要确定三个标记的优先级:alt第一,mul第二,add第三,pushdown的时候要按照这样的顺序pushdown,

同时下压高优先级的标记,会影响到低优先级的标记,这个需要注意,

另外,在接收到父节点传过来的add标记时,更新自身时(update_add成员函数),要注意计算sum3,sum2,sum1的先后顺序,一定是sum3,sum2,sum1,

这三个sum计算的方法如下:

$\begin{array}{l} \left( {a + x} \right)^2 = a^2 + 2ax + x^2 \\ \left( {a_1 + x} \right)^2 + \left( {a_2 + x} \right)^2 + \cdots + \left( {a_n + x} \right)^2 = \left( {a_1 ^2 + \cdots + a_n ^2 } \right) + 2x\left( {a_1 + \cdots + a_n } \right) + nx^2 \\ \left( {a + x} \right)^3 = a^3 + 3a^2 x + 3ax^2 + x^3 \\ \left( {a_1 + x} \right)^3 + \left( {a_2 + x} \right)^3 + \cdots + \left( {a_n + x} \right)^3 = \left( {a_1 ^3 + \cdots + a_n ^3 } \right) + 3x\left( {a_1 ^2 + \cdots + a_n ^2 } \right) + 3x^2 \left( {a_1 + \cdots + a_n } \right) + nx^3 \\ \end{array}$

AC代码:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=+;
const int MOD=; int n,m; /********************************* Segment Tree - st *********************************/
struct Node
{
int l,r;
int sum1,sum2,sum3;
int add,mul,alt;
void Update_Alt(int x)
{
x%=MOD;
sum1 = (r-l+) * x % MOD;
sum2 = (r-l+) * x % MOD * x % MOD;
sum3 = (r-l+) * x % MOD * x % MOD * x % MOD;
alt=x;
add=;
mul=;
}
void Update_Mul(int x)
{
x%=MOD;
sum1 = sum1 % MOD * x % MOD;
sum2 = sum2 % MOD * x % MOD * x % MOD;
sum3 = sum3 % MOD * x % MOD * x % MOD * x % MOD;
mul = mul % MOD * x % MOD;
add = add % MOD * x % MOD;
}
void Update_Add(int x)
{
x%=MOD;
sum3 = ( sum3%MOD + *x%MOD*sum2%MOD + *x%MOD*x%MOD*sum1%MOD + (r-l+)*x%MOD*x%MOD*x%MOD ) % MOD;
sum2 = ( sum2%MOD + *x%MOD*sum1%MOD + (r-l+)%MOD*x%MOD*x%MOD ) % MOD;
sum1 = ( sum1%MOD + (r-l+)%MOD*x%MOD ) % MOD;
add=(add%MOD+x)%MOD;
}
}node[*maxn];
void Pushdown(int root)
{
int ls=root*, rs=root*+;
if(node[root].alt!=)
{
node[ls].Update_Alt(node[root].alt);
node[rs].Update_Alt(node[root].alt);
node[root].alt=;
}
if(node[root].mul!=)
{
node[ls].Update_Mul(node[root].mul);
node[rs].Update_Mul(node[root].mul);
node[root].mul=;
}
if(node[root].add!=)
{
node[ls].Update_Add(node[root].add);
node[rs].Update_Add(node[root].add);
node[root].add=;
}
}
void Pushup(int root)
{
int ls=root*, rs=root*+;
node[root].sum1=(node[ls].sum1+node[rs].sum1)%MOD;
node[root].sum2=(node[ls].sum2+node[rs].sum2)%MOD;
node[root].sum3=(node[ls].sum3+node[rs].sum3)%MOD;
}
void Build(int root,int l,int r) //对区间[l,r]建树
{
if(l>r) return;
node[root].l=l; node[root].r=r;
node[root].sum1=;
node[root].sum2=;
node[root].sum3=;
node[root].alt=;
node[root].add=;
node[root].mul=; if(l<r)
{
int mid=l+(r-l)/;
Build(root*,l,mid);
Build(root*+,mid+,r);
Pushup(root);
}
}
void Alt(int root,int st,int ed,ll val) //区间[st,ed]全部改成val
{
if(st>node[root].r || ed<node[root].l) return;
if(st<=node[root].l && node[root].r<=ed) node[root].Update_Alt(val);
else
{
Pushdown(root);
Alt(root*,st,ed,val);
Alt(root*+,st,ed,val);
Pushup(root);
}
}
void Mul(int root,int st,int ed,ll val) //区间[st,ed]全部加上val
{
if(st>node[root].r || ed<node[root].l) return;
if(st<=node[root].l && node[root].r<=ed) node[root].Update_Mul(val);
else
{
Pushdown(root);
Mul(root*,st,ed,val);
Mul(root*+,st,ed,val);
Pushup(root);
}
}
void Add(int root,int st,int ed,ll val) //区间[st,ed]全部加上val
{
if(st>node[root].r || ed<node[root].l) return;
if(st<=node[root].l && node[root].r<=ed) node[root].Update_Add(val);
else
{
Pushdown(root);
Add(root*,st,ed,val);
Add(root*+,st,ed,val);
Pushup(root);
}
}
int Query(int root,int st,int ed,int p) //查询区间[st,ed]的p次方和
{
if(st>node[root].r || ed<node[root].l) return ;
if(st<=node[root].l && node[root].r<=ed)
{
if(p==) return node[root].sum1;
if(p==) return node[root].sum2;
if(p==) return node[root].sum3;
}
else
{
Pushdown(root);
int ls=Query(root*,st,ed,p)%MOD;
int rs=Query(root*+,st,ed,p)%MOD;
Pushup(root);
return (ls+rs)%MOD;
}
}
/********************************* Segment Tree - st *********************************/ int main()
{
while(scanf("%d%d",&n,&m) && n*m!=)
{
Build(,,n);
for(int i=;i<=m;i++)
{
int op; scanf("%d",&op);
if(op==)
{
int x,y,k;
scanf("%d%d%d",&x,&y,&k);
Add(,x,y,k);
}
if(op==)
{
int x,y,k;
scanf("%d%d%d",&x,&y,&k);
Mul(,x,y,k);
}
if(op==)
{
int x,y,k;
scanf("%d%d%d",&x,&y,&k);
Alt(,x,y,k);
}
if(op==)
{
int l,r,p;
scanf("%d%d%d",&l,&r,&p);
printf("%d\n",Query(,l,r,p));
}
}
}
}

HDU 4578 - Transformation - [加强版线段树]的更多相关文章

  1. HDU 4578 Transformation (线段树)

    Transformation Time Limit: 15000/8000 MS (Java/Others)    Memory Limit: 65535/65536 K (Java/Others)T ...

  2. HDU 4578——Transformation——————【线段树区间操作、确定操作顺序】

    Transformation Time Limit: 15000/8000 MS (Java/Others)    Memory Limit: 65535/65536 K (Java/Others)T ...

  3. HDU - 4578 Transformation(线段树区间修改)

    https://cn.vjudge.net/problem/HDU-4578 题意 4种操作,区间加,区间乘,区间变为一个数,求区间的和.平方和以及立方和. 分析 明显线段树,不过很麻烦..看kuan ...

  4. HDU 4578 Transformation (线段树区间多种更新)

    http://acm.hdu.edu.cn/showproblem.php?pid=4578 题目大意:对于一个给定序列,序列内所有数的初始值为0,有4种操作.1:区间(x, y)内的所有数字全部加上 ...

  5. hdu 4578 Transformation(线段树)

    线段树上的多操作... 题目大意: 树上 的初始值为0,然后有下列三种操作和求和. 1  x y c  在X-Y的之间全部加上C. 2  x y c  在X-Y的之间全部乘上C. 3  x y c   ...

  6. Hdu 4578 Transformation (线段树 分类分析)

    Transformation Time Limit: 15000/8000 MS (Java/Others)    Memory Limit: 65535/65536 K (Java/Others)T ...

  7. hdu 5700区间交(线段树)

    区间交 Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submiss ...

  8. Snacks HDU 5692 dfs序列+线段树

    Snacks HDU 5692 dfs序列+线段树 题意 百度科技园内有n个零食机,零食机之间通过n−1条路相互连通.每个零食机都有一个值v,表示为小度熊提供零食的价值. 由于零食被频繁的消耗和补充, ...

  9. HDU 4578 Transformation --线段树,好题

    题意: 给一个序列,初始全为0,然后有4种操作: 1. 给区间[L,R]所有值+c 2.给区间[L,R]所有值乘c 3.设置区间[L,R]所有值为c 4.查询[L,R]的p次方和(1<=p< ...

随机推荐

  1. oracle sqlplus常用命令大全

    show和set命令是两条用于维护SQL*Plus系统变量的命令 SQL> show all --查看所有68个系统变量值 SQL> show user --显示当前连接用户 SQL> ...

  2. Ognl_JSTL_学习笔记

    控制标签 使用Struts2标签必须先导入标签库,在页面使用如下代码导入Struts2标签:<%@taglib prefix="s" uri="/struts-ta ...

  3. 8 -- 深入使用Spring -- 4...2 使用AspectJ实现AOP

    8.4.2 使用AspectJ实现AOP AspectJ是一个基于Java语言的AOP框架.Spring 4.0 的AOP对AspectJ很好的集成. AspectJ是Java 语言的一个AOP实现, ...

  4. iOS 使用正则表达式库RegexKitLite的问题

    因为RegexKitLite使用ICU库,所以需要动态链接到/usr/lib/libicucore.dylib库当中去,否则你会得到错误.具体Dynamically linked to /usr/li ...

  5. 设置js同源

    1)设置 document.domain 成一样的就行了(前提是都是同一个顶级域名) 2)例如,域名1:news.xxx.com ,域名2:member.xxx.com,这时可以设置它们的 docum ...

  6. 后端判断用户是否关闭浏览器(关闭网站相关的全部tab)

    一)程序步骤 1.js 写一个定时请求后端(php),后端接收到请求到,把当前时间戳写入文件 2.php 阻塞,这里我写的是 30 秒,也就是 sleep(30) 3.获取当前时间和文件里的时间作比较 ...

  7. Unity Shader 自定义纹理坐标变量写法

    Properties { _R(,)) = 1.0 _ColorTex("ColorTex (RGB)", 2D) = "red" {} struct Inpu ...

  8. 关于bat中使用rar压缩命令

    数据库备份,导出的dmp 文件比较大,需要压缩,压缩后大小能变为原来十分之一左右吧. 写的是批处理的语句,每天调用,自动导出dmp 文件,压缩删除原文件. 首先写下路径 先将压缩软件的路径写入系统的环 ...

  9. 高效使用github

    下面两个资料是我在github上面整理出来的repo,不断进行更新,将遇到的有帮助的文章尽量整理到上面,方便初学者也方便回顾学习.如果恰好你也有一些资料文章,欢迎fork - modify - pul ...

  10. MySQL数据库执行sql语句创建数据库和表提示The 'InnoDB' feature is disabled; you need MySQL built with 'InnoDB' to have it working

    MySQL创建数据库 只想sql文件创建表时候提示 The 'InnoDB' feature is disabled; you need MySQL built with 'InnoDB' to ha ...