(Python)numpy的argmax用法
解释
还是从一维数组出发.看下面的例子.
import numpy as np
a = np.array([3, 1, 2, 4, 6, 1])
print(np.argmax(a))
4
argmax返回的是最大数的索引.argmax有一个参数axis,默认是0,表示第几维的最大值.看二维的情况.
import numpy as np
a = np.array([[1, 5, 5, 2],
[9, 6, 2, 8],
[3, 7, 9, 1]])
print(np.argmax(a, axis=0))
[1,2,2,1]
为了描述方便,a就表示这个二维数组.np.argmax(a, axis=0)的含义是
a[0][j],
a[1][j],
a[2][j]
(j=0,1,2,3)中最大值的索引.(每1列的最大索引)
从a[0][j]开始,最大值索引最初为(0,0,0,0),拿a[0][j]和a[1][j]作比较,9大于1,6大于5,8大于2,所以最大值索引由(0,0,0,0)更新为(1,1,0,1),再和a[1][j]作比较,7大于6,9大于5所以更新为(1,2,2,1).再分析下面的输出.
import numpy as np
a = np.array([[1, 5, 5, 2],
[9, 6, 2, 8],
[3, 7, 9, 1]])
print(np.argmax(a, axis=1))
[1,0,2]
np.argmax(a, axis=1)的含义是
a[i][0],a[i][1],a[i][2],a[i][3]
(i=0,1,2)中最大值的索引.(每1行的最大索引)
从a[i][0]开始,a[i][0]对应的索引为(0,0,0),先假定它就是最大值索引(思路和上节简单例子完全一致)拿a[i][0]和a[i][1]作比较,5大于1,7大于3所以最大值索引由(0,0,0)更新为(1,0,1),再和a[i][2]作比较,9大于7,更新为(1,0,2),再和a[i][3]作比较,不用更新,最终值为(1,0,2)
再看三维的情况.
import numpy as np
a = np.array([
[
[1, 5, 5, 2],
[9, -6, 2, 8],
[-3, 7, -9, 1]
],
[
[-1, 5, -5, 2],
[9, 6, 2, 8],
[3, 7, 9, 1]
]
])
print(np.argmax(a, axis=0))
[[0 0 0 0]
[0 1 0 0]
[1 0 1 0]]
np.argmax(a, axis=0)的含义是a[0][j][k],a[1][j][k] (j=0,1,2,k=0,1,2,3)中最大值的索引.
从a[0][j][k]开始,a[0][j][k]对应的索引为((0,0,0,0),(0,0,0,0),(0,0,0,0)),拿a[0][j][k]和a[1][j][k]对应项作比较6大于-6,3大于-3,9大于-9,所以更新这几个位置的索引,将((0,0,0,0),(0,0,0,0),(0,0,0,0))更新为((0,0,0,0),(0,1,0,0),(1,0,1,0)). 再看axis=1的情况.
import numpy as np
a = np.array([
[
[1, 5, 5, 2],
[9, -6, 2, 8],
[-3, 7, -9, 1]
],
[
[-1, 5, -5, 2],
[9, 6, 2, 8],
[3, 7, 9, 1]
]
])
print(np.argmax(a, axis=1))
[[1 2 0 1]
[1 2 2 1]]
np.argmax(a, axis=1)的含义是a[i][0][k],a[i][1][k],a[i][2][k] (i=0,1,k=0,1,2,3)中最大值的索引.(每1列的最大索引)
从a[i][0][k]开始,a[i][0][k]对应的索引为((0,0,0,0),(0,0,0,0)),拿a[i][0][k]和a[i][1][k]对应项作比较,9大于1,8大于2,9大于-1,6大于5,2大于-5,8大于2,所以更新这几个位置的索引,将((0,0,0,0),(0,0,0,0))更新为((1,0,0,1),(1,1,1,1)),现在最大值对应的数组为((9,5,5,8),(9,6,2,8)).
再拿((9,5,5,8),(9,6,2,8))和a[i][2][k]对应项从比较,7大于5,7大于6,9大于2.更新这几个位置的索引.将((1,0,0,1),(1,1,1,1))更新为((1,2,0,1),(1,2,2,1)).axis=2的情况也是类似的.
(Python)numpy的argmax用法的更多相关文章
- Python Numpy shape 基础用法(转自他人的博客,如涉及到侵权,请联系我)
Python Numpy shape 基础用法 shape函数是numpy.core.fromnumeric中的函数,它的功能是读取矩阵的长度,比如shape[0]就是读取矩阵第一维度的长度.它的输入 ...
- python numpy sum函数用法
numpy.sum numpy.sum(a, axis=None, dtype=None, out=None, keepdims=False)[source] Sum of array element ...
- python numpy argsort函数用法
numpy.argsort numpy.argsort(a, axis=-1, kind='quicksort', order=None)[source] Returns the indices th ...
- Python NumPy学习总结
一.NumPy简介 其官网是:http://www.numpy.org/ NumPy是Python语言的一个扩充程序库.支持高级大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库.Num ...
- Python numpy中矩阵的用法总结
关于Python Numpy库基础知识请参考博文:https://www.cnblogs.com/wj-1314/p/9722794.html Python矩阵的基本用法 mat()函数将目标数据的类 ...
- python numpy库np.percentile用法说明
在python中计算一个多维数组的任意百分比分位数,此处的百分位是从小到大排列,只需用np.percentile即可…… a = range(1,101) #求取a数列第90%分位的数值 np.per ...
- Numpy的简单用法
Numpy的简单用法 import numpy as np 一.创建ndarray对象 列表转换成ndarray: >>> a = [1,2,3,4,5] >>> ...
- python numpy学习记录
numpy是一个python和矩阵相关的库,在机器学习中非常有用,记录下numpy的基本用法 numpy的数组类叫做ndarray也叫做数组,跟python标准库中的array.array不同,后者只 ...
- Python Numpy基础教程
Python Numpy基础教程 本文是一个关于Python numpy的基础学习教程,其中,Python版本为Python 3.x 什么是Numpy Numpy = Numerical + Pyth ...
随机推荐
- NOSQL之MONGODB
MongoDB 基于分布式文件存储的数据库.由 C++ 语言编写.旨在为 WEB 应用提供可扩展的高性能数据存储解决方案,它是一个介于关系数据库和非关系数据库之间的产品,是非关系数据库当中功能最丰富, ...
- php 中的引用
php 有类似 C 中的指针 &. 但在 php 中叫 引用. 虽然和 传地址很像,但是差别很大.(估计底层实现应该差不多,只是猜想,有机会再研究) 这里有一个关于 php 的对象的赋值其实就 ...
- 使用Apriori进行关联分析(二)
书接上文(使用Apriori进行关联分析(一)),介绍如何挖掘关联规则. 发现关联规则 我们的目标是通过频繁项集挖掘到隐藏的关联规则. 所谓关联规则,指通过某个元素集推导出另一个元素集.比如有一个频繁 ...
- 日志挖掘(logminer)
转. 如何使用logminer分析Oracle 联机日志 笔者在工作中经常遇到这样的情况:为了追踪数据的变化,需要知道某个表或者表中的某行数据是什么时候被修改的,以及修改前的内容. ...
- Maven的dependency type属性
官方地址: http://maven.apache.org/ref/3.5.2/maven-model/maven.html (搜索:Some examples are jar, war, ejb-c ...
- go test 初始化--- TestMain的使用
go test 功能,提高了开发和测试的效率. 有时会遇到这样的场景: 进行测试之前需要初始化操作(例如打开连接),测试结束后,需要做清理工作(例如关闭连接)等等.这个时候就可以使用TestMain( ...
- js引用类型之valueof和tostring(三)
一.摘要: <javascript高级程序设计第三版>一书中单独有一章对js的引用类型(Object.Array.RegExp.Function:基本包装类型:Boolean.Number ...
- 渐变(Gradients)
渐变是一种可以在两个或两个以上颜色之间实现平稳过渡的效果,分为线性渐变(Linear Gradients)和径向渐变(Radial Gradients). 在演示之前,先创建一个div,并添加基础样式 ...
- ASP.NET Web Pages:发布网站
ylbtech-.Net-ASP.NET Web Pages:发布网站 1.返回顶部 1. ASP.NET Web Pages - 发布网站 学习如何在不使用 WebMatrix 的情况下发布 Web ...
- 接口测试3-4使用csv进行接口测试
参照前面的例子 向URL发送corpid和corsecret2个参数,可以获取正确的tokenid https://qyapi.weixin.qq.com/cgi-bin/gettoken 数据 场景 ...