Smith Numbers

Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 14521   Accepted: 4906

Description

While skimming his phone directory in 1982, Albert Wilansky, a mathematician of Lehigh University,noticed that the telephone number of his brother-in-law H. Smith had the following peculiar property: The sum of the digits of that number was equal to the sum of the digits of the prime factors of that number. Got it? Smith's telephone number was 493-7775. This number can be written as the product of its prime factors in the following way:

4937775= 3*5*5*65837

The sum of all digits of the telephone number is 4+9+3+7+7+7+5= 42,and the sum of the digits of its prime factors is equally 3+5+5+6+5+8+3+7=42. Wilansky was so amazed by his discovery that he named this kind of numbers after his brother-in-law: Smith numbers. 

As this observation is also true for every prime number, Wilansky decided later that a (simple and unsophisticated) prime number is not worth being a Smith number, so he excluded them from the definition. 

Wilansky published an article about Smith numbers in the Two Year College Mathematics Journal and was able to present a whole collection of different Smith numbers: For example, 9985 is a Smith number and so is 6036. However,Wilansky was not able to find a Smith number that was larger than the telephone number of his brother-in-law. It is your task to find Smith numbers that are larger than 4937775!

Input

The input file consists of a sequence of positive integers, one integer per line. Each integer will have at most 8 digits. The input is terminated by a line containing the number 0.

Output

For every number n > 0 in the input, you are to compute the smallest Smith number which is larger than n,and print it on a line by itself. You can assume that such a number exists.

Sample Input

4937774
0

Sample Output

4937775

题意

定义一个Smith Numbers:对于一个数n,如果n中的各位数相加的和与n的每个质因数上的各位数字相加的和相等;

如:4937775= 3*5*5*65837 ; 4+9+3+7+7+7+5==3+5+5+6+5+8+3+7=42,即4937775是Smith Numbers

给出一个数n,求出大于n的最小的Smith Numbers

思路

由定义可推出,Smith Numbers一定不是素数,所以可以先判断一个数是否是素数,然后写个对数n的各位数求和的函数,分解质因数,暴力求解即可

AC代码

#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <math.h>
#include <limits.h>
#include <map>
#include <stack>
#include <queue>
#include <vector>
#include <set>
#include <string>
#define ll long long
#define ms(a) memset(a,0,sizeof(a))
#define pi acos(-1.0)
#define INF 0x3f3f3f3f
const double E=exp(1);
const int maxn=1e6+10;
using namespace std;
int a[maxn];
int is(ll x)//判断素数
{
for(int i=2;i*i<=x;i++)
{
if(x%i==0)
return 0;
}
return 1;
}
ll sum(ll n)
{
ll ans=0;
while(n)
{
ans+=n%10;
n/=10;
}
return ans;
}
int main(int argc, char const *argv[])
{
ll n;
while(~scanf("%lld",&n))
{
if(n==0)
break;
ll _;
for(ll x=n+1;;x++)
{
ll ans;
ll flag=0;
ll y=x;
//如果不是素数
if(is(y)==0)
{
ans=sum(y);
for(int i=2;i*i<=y;i++)
{
if(y%i==0)
{
while(y%i==0)
{
flag+=sum(i);
y/=i;
}
}
}
if(y>1)
flag+=sum(y);
if(flag==ans)
{
_=x;
break;
}
}
}
printf("%lld\n",_);
}
return 0;
}

POJ 1142:Smith Numbers(分解质因数)的更多相关文章

  1. POJ 1142 Smith Numbers(分治法+质因数分解)

    http://poj.org/problem?id=1142 题意: 给出一个数n,求大于n的最小数,它满足各位数相加等于该数分解质因数的各位相加. 思路:直接暴力. #include <ios ...

  2. POJ 1142 Smith Numbers(史密斯数)

    Description 题目描述 While skimming his phone directory in 1982, Albert Wilansky, a mathematician of Leh ...

  3. poj 1142 Smith Numbers

    Description While skimming his phone directory in 1982, Albert Wilansky, a mathematician of Lehigh U ...

  4. Smith Numbers POJ - 1142 (暴力+分治)

    题意:给定一个N,求一个大于N的最小的Smith Numbers,Smith Numbers是一个合数,且分解质因数之后上质因子每一位上的数字之和 等于 其本身每一位数字之和(别的博客偷的题意) 思路 ...

  5. Smith Numbers(分解质因数)

    Smith Numbers Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 14173   Accepted: 4838 De ...

  6. poj 1730Perfect Pth Powers(分解质因数)

                                                             id=1730">Perfect Pth Powers Time Li ...

  7. A - Smith Numbers POJ

    While skimming his phone directory in 1982, Albert Wilansky, a mathematician of Lehigh University,no ...

  8. POJ1811(SummerTrainingDay04-G miller-rabin判断素性 && pollard-rho分解质因数)

    Prime Test Time Limit: 6000MS   Memory Limit: 65536K Total Submissions: 35528   Accepted: 9479 Case ...

  9. C语言程序设计100例之(5):分解质因数

    例5    分解质因数 题目描述 将一个正整数分解质因数.例如:输入90,输出 90=2*3*3*5. 输入 输入数据包含多行,每行是一个正整数n (1<n <100000) . 输出 对 ...

随机推荐

  1. java static关键字使用

    一.使用static声明属性 1.使用static声明属性,则该属性属于全局变量(有些地方也称静态属性). 2.类的属性调用格式: 类名称.static 属性Preson.country=B城; 二. ...

  2. 禁用表单元素 && 禁止选中

    一.禁用表单元素 1.dom设置属性 disabled="disabled" || disabled=true 2.css样式(高版本浏览器) pointer-events:non ...

  3. ActivityGroup实现tab功能

    android.app包中含有一个ActivityGroup类,该类是Activity的容器,可以包含多个嵌套进来的 Activitys,这篇文章就是借助ActivityGroup可以嵌套Activi ...

  4. RabbitMQ入门_08_所谓的点对点与发布订阅模型

    A. JMS 模型 JMS 中定义了点对点和发布订阅两种消息模型,原来以为 AMQP 协议中 direct Exchange 对应点对点模型,topic Exchange 对应发布订阅模型,fanou ...

  5. [.NET开发] NPOI导出

    //导出全部 expertPara = GetExpetPara(); expertPara.BeginIndex = pager.CurrentPageIndex; expertPara.EndIn ...

  6. Spring Cloud 学习网址

    1. https://blog.csdn.net/forezp/article/details/70148833  史上最简单的 SpringCloud 教程 (非常适合新手快速上手教程)2.http ...

  7. 37mysql 表操作

    创建表 #语法: create table 表名( 字段名1 类型[(宽度) 约束条件], 字段名2 类型[(宽度) 约束条件], 字段名3 类型[(宽度) 约束条件] ); #注意: 1. 在同一张 ...

  8. 『Sklearn』框架自带数据集接口

    自带数据集类型如下: # 自带小型数据集# sklearn.datasets.load_<name># 在线下载数据集# sklearn.datasets.fetch_<name&g ...

  9. _beginthreadex()和CreateThread()的区别

    在本例子中我们使用——beginThreadex这个函数,它和createThread的区别是: 为了方便管理,我么在使用该函数的时候可以把它的线程函数作为类成员,这也就需要在类中把该函数变成静态函数 ...

  10. Leetcode 22

    //这题感觉不如前两题回溯清楚,还要再看看class Solution { public: vector<string> generateParenthesis(int n) { vect ...