Chinese remainder theorem again

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)

Problem Description
我知道部分同学最近在看中国剩余定理,就这个定理本身,还是比较简单的:
假设m1,m2,…,mk两两互素,则下面同余方程组:
x≡a1(mod m1)
x≡a2(mod m2)

x≡ak(mod mk)
在0<=<m1m2…mk内有唯一解。
记Mi=M/mi(1<=i<=k),因为(Mi,mi)=1,故有二个整数pi,qi满足Mipi+miqi=1,如果记ei=Mi/pi,那么会有:
ei≡0(mod mj),j!=i
ei≡1(mod mj),j=i
很显然,e1a1+e2a2+…+ekak就是方程组的一个解,这个解加减M的整数倍后就可以得到最小非负整数解。
这就是中国剩余定理及其求解过程。
现在有一个问题是这样的:
一个正整数N除以M1余(M1 - a),除以M2余(M2-a), 除以M3余(M3-a),总之, 除以MI余(MI-a),其中(a<Mi<100 i=1,2,…I),求满足条件的最小的数。 
 
Input
输入数据包含多组测试实例,每个实例的第一行是两个整数I(1<I<10)和a,其中,I表示M的个数,a的含义如上所述,紧接着的一行是I个整数M1,M1...MI,I=0 并且a=0结束输入,不处理。
 
Output
对于每个测试实例,请在一行内输出满足条件的最小的数。每个实例的输出占一行。
 
Sample Input
2 1
2 3
0 0
 
Sample Output
5
 
Author
lcy
 
Source
思路:(mi+a)%mi==0  i=1,2,3,...I;
    求出所有数的最小公倍数-a;
    这题用中国剩余没法写,有可能是负数,
代码:

#include<iostream>
using namespace std;
#define ll long long
ll gcd(ll x,ll y)
{
return y?gcd(y,x%y):x;
}
int main()
{
ll x,y,z,i,t;
while(cin>>x>>y)
{
if(x==&&y==)break;
if(x!=)
cin>>t;
for(i=;i<x;i++)
{
cin>>z;
t=t/gcd(t,z)*z;
}
cout<<t-y<<endl;
}
return ;
}

hdu 1788 最小公倍数(这题面。。。)的更多相关文章

  1. hdu 1788 Chinese remainder theorem again(最小公倍数)

    Problem Description 我知道部分同学最近在看中国剩余定理,就这个定理本身,还是比较简单的: 假设m1,m2,-,mk两两互素,则下面同余方程组: x≡a1(mod m1) x≡a2( ...

  2. HDU 2503 a/b + c/d(最大公约数与最小公倍数,板子题)

    话不多说,日常一水题,水水更健康!┗|`O′|┛ 嗷~~ a/b + c/d Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768 ...

  3. hdu 1788(多个数的最小公倍数)

    Chinese remainder theorem again Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 ...

  4. HDU 2504 又见GCD(最大公约数与最小公倍数变形题)

    又见GCD Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Subm ...

  5. HDU 1102 最小生成树裸题,kruskal,prim

    1.HDU  1102  Constructing Roads    最小生成树 2.总结: 题意:修路,裸题 (1)kruskal //kruskal #include<iostream> ...

  6. HDU 1713 最小公倍数与最大公约数的问题 相遇周期

    欢迎参加——BestCoder周年纪念赛(高质量题目+多重奖励) 相遇周期 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/ ...

  7. HDU 1788 Chinese remainder theorem again

    题目链接 题意 : 中文题不详述. 思路 : 由N%Mi=(Mi-a)可得(N+a)%Mi=0;要取最小的N即找Mi的最小公倍数即可. #include <cstdio> #include ...

  8. HDU 4493 Tutor 水题的收获。。

    题目: http://acm.hdu.edu.cn/showproblem.php?pid=4493 题意我都不好意思说,就是求12个数的平均数... 但是之所以发博客,显然有值得发的... 这个题最 ...

  9. hdu 1853 最小费用流好题 环的问题

    Cyclic Tour Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/65535 K (Java/Others) Tota ...

随机推荐

  1. [py]flask动态展示主机内存图

    echarts基础 需要借助这个图来绘制,动态内存图. 绘制步骤 写py脚本来入库日志 选取合适的echart,并观察图所需的数据格式 用flask返回这个静态的echarts 用flask写接口返回 ...

  2. Pycharm上python3运行unittest无法生成测试报告

    原文地址https://www.cnblogs.com/yoyoketang/p/7523409.html 前言 经常有人在群里反馈,明明代码一样的啊,为什么别人的能出报告,我的出不了报告:为什么别人 ...

  3. Java接口多线程并发测试 (一)

    本文为作者原创,禁止转载,违者必究法律责任!!! 本文为作者原创,禁止转载,违者必究法律责任!!! Java接口多线程并发测试 一,首先写一个接口post 请求代码: import org.apach ...

  4. #C++初学记录(算法考试1)

    B - Maximal Continuous Rest Each day in Berland consists of n hours. Polycarp likes time management. ...

  5. Web前端开发推荐阅读书籍、学习课程下载

    转自http://www.xuanfengge.com/fe-books.html 前言 学校里没有前端的课程,那如何学习JavaScript,又如何使自己成为一个合格的前端工程师呢? 除了在项目中学 ...

  6. mysql的count方法详解

    1.cout(*)会统计为null的行: 2.count(列名)不会统计此列null值的行: 3.count(distinct col)计算该列除null之外的不重复数量:

  7. nginx安装,反向代理配置

    1.centos 版本 下载最新稳定版 https://www.nginx.com/resources/wiki/start/topics/tutorials/install/# 2.执行语句: ./ ...

  8. java文件生成

    package com.gcy.test.util; import java.io.BufferedWriter; import java.io.File; import java.io.FileNo ...

  9. python 星号*使用方法

    1.乘号 2.表示倍数 def T(msg,time=1): print((msg+',,')*time) >>>T('hi',3) hi,,hi,,hi 3.单个星号* --1-- ...

  10. Git本地仓库与远程github同步的时候提示fatal: remote origin already exists 错误解决办法

    Git本地仓库与远程github同步的时候提示fatal: remote origin already exists 错误解决办法 1.git在本地的电脑创建了仓库,要远程同步github的仓库.使用 ...