hdu 1788 最小公倍数(这题面。。。)
Chinese remainder theorem again
Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
假设m1,m2,…,mk两两互素,则下面同余方程组:
x≡a1(mod m1)
x≡a2(mod m2)
…
x≡ak(mod mk)
在0<=<m1m2…mk内有唯一解。
记Mi=M/mi(1<=i<=k),因为(Mi,mi)=1,故有二个整数pi,qi满足Mipi+miqi=1,如果记ei=Mi/pi,那么会有:
ei≡0(mod mj),j!=i
ei≡1(mod mj),j=i
很显然,e1a1+e2a2+…+ekak就是方程组的一个解,这个解加减M的整数倍后就可以得到最小非负整数解。
这就是中国剩余定理及其求解过程。
现在有一个问题是这样的:
一个正整数N除以M1余(M1 - a),除以M2余(M2-a), 除以M3余(M3-a),总之, 除以MI余(MI-a),其中(a<Mi<100 i=1,2,…I),求满足条件的最小的数。
2 3
0 0
#include<iostream>
using namespace std;
#define ll long long
ll gcd(ll x,ll y)
{
return y?gcd(y,x%y):x;
}
int main()
{
ll x,y,z,i,t;
while(cin>>x>>y)
{
if(x==&&y==)break;
if(x!=)
cin>>t;
for(i=;i<x;i++)
{
cin>>z;
t=t/gcd(t,z)*z;
}
cout<<t-y<<endl;
}
return ;
}
hdu 1788 最小公倍数(这题面。。。)的更多相关文章
- hdu 1788 Chinese remainder theorem again(最小公倍数)
Problem Description 我知道部分同学最近在看中国剩余定理,就这个定理本身,还是比较简单的: 假设m1,m2,-,mk两两互素,则下面同余方程组: x≡a1(mod m1) x≡a2( ...
- HDU 2503 a/b + c/d(最大公约数与最小公倍数,板子题)
话不多说,日常一水题,水水更健康!┗|`O′|┛ 嗷~~ a/b + c/d Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768 ...
- hdu 1788(多个数的最小公倍数)
Chinese remainder theorem again Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 ...
- HDU 2504 又见GCD(最大公约数与最小公倍数变形题)
又见GCD Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Subm ...
- HDU 1102 最小生成树裸题,kruskal,prim
1.HDU 1102 Constructing Roads 最小生成树 2.总结: 题意:修路,裸题 (1)kruskal //kruskal #include<iostream> ...
- HDU 1713 最小公倍数与最大公约数的问题 相遇周期
欢迎参加——BestCoder周年纪念赛(高质量题目+多重奖励) 相遇周期 Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/ ...
- HDU 1788 Chinese remainder theorem again
题目链接 题意 : 中文题不详述. 思路 : 由N%Mi=(Mi-a)可得(N+a)%Mi=0;要取最小的N即找Mi的最小公倍数即可. #include <cstdio> #include ...
- HDU 4493 Tutor 水题的收获。。
题目: http://acm.hdu.edu.cn/showproblem.php?pid=4493 题意我都不好意思说,就是求12个数的平均数... 但是之所以发博客,显然有值得发的... 这个题最 ...
- hdu 1853 最小费用流好题 环的问题
Cyclic Tour Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/65535 K (Java/Others) Tota ...
随机推荐
- [git]git版本管理学习记录
今天看到别人用这玩意记录自己的进度, 我也学习了一下. 1,适当的工具会提升效率 2,关注点还是得放在代码本身上. github/gitignore github提供了各种gitignore文件 有p ...
- [django]模板template原理
django 中的render和render_to_response()和locals(): http://www.cnblogs.com/wangchaowei/p/6750512.html 什么是 ...
- application实例
application详解及实例 application对象用来在多个程序或者是多个用户之间共享数据,用户使用的所有application对象都是一样的,这与session对象不同.服务器一旦启动,就 ...
- How many Fibs?(poj 2413)大数斐波那契
http://acm.sdut.edu.cn:8080/vjudge/contest/view.action?cid=259#problem/C Description Recall the defi ...
- PAT 1020 Tree Traversals[二叉树遍历]
1020 Tree Traversals (25)(25 分) Suppose that all the keys in a binary tree are distinct positive int ...
- Linux系统——MySQL基础(二)
# MySQL数据库完全备份与恢复## 数据库备份的分类1. 从物理与逻辑的角度,备份可以分为物理备份和逻辑备份.(1)物理备份:对数据库操作系统的物理文件(数据文件.日志文件)的备份.物理备份又可分 ...
- 文本按列导入excel
打开excel,选择数据选项卡,自文本选项.
- Linux 安装gcc、gcc-c++编译器
安装环境 Red Hat Enterprise Linux Server release 7.3 (Maipo) 方式一:yum安装 使用ISO制作yum源:Linux 使用系统ISO制作yum源 y ...
- Python 让PIP源使用国内镜像,提升下载速度和安装成功率
对于Python开发用户来讲,PIP安装软件包是家常便饭.但国外的源下载速度实在太慢,浪费时间.而且经常出现下载后安装出错问题.所以把PIP安装源替换成国内镜像,可以大幅提升下载速度,还可以提高安装成 ...
- Js基础知识1-数组操作全解
数组操作全解 js变量类型 var string; var name = "student",age=12; //underfined.null.boolean.string.nu ...