TensorFlow实战中AlexNet卷积神经网络的训练

01 出错

TypeError: as_default() missing 1 required positional argument: 'self'

经过百度、谷歌的双重查找,没找到就具体原因。后面去TensorFlow官方文档中发现,tf.Graph的用法如下:

g = tf.Graph()
with g.as_default():
# Define operations and tensors in `g`.
c = tf.constant(30.0)
assert c.graph is g

因此,做了一点小改动。把语句:

with tf.Graph().as_default():

改成:

g = tf.Graph()
with g.as_default():

02 运行代码对比带LRN和不带

最后成功运行了第一个带有LRN的版本:

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time : 2018/11/20 10:42
# @Author : Chen Cjv
# @Site : http://www.cnblogs.com/cjvae/
# @File : AlexNet.py
# @Software: PyCharm
import os
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
from datetime import datetime
import math
import time
import tensorflow as tf batch_size = 32
num_batches = 100 # 展示每一个卷积层或池化层输出的tensor的尺寸,接收一个tensor输入
def print_activation(t):
print(t.op.name, '', t.get_shape().as_list()) def inference(images):
# 训练的模型参数
parameters = [] # 1th CL starting
with tf.name_scope('conv1') as scope:
# 截断正态分布初始化卷积核参数
# 卷积核尺寸11 x 11 颜色3通道 卷积核64
kernel = tf.Variable(tf.truncated_normal([11, 11, 3, 64],
dtype=tf.float32, stddev=1e-1), name='weights')
# 实现卷积操作,步长4x4(在图像上每4x4区域取样一次,每次取样卷积核大小为11x11)
conv = tf.nn.conv2d(images, kernel, [1, 4, 4, 1], padding='SAME')
# 卷积偏置为0
biases = tf.Variable(tf.constant(0.0, shape=[64], dtype=tf.float32),
trainable=True, name='biases')
# 将卷积结果与偏置相加
bias = tf.nn.bias_add(conv, biases)
# 对结果非线性处理
conv1 = tf.nn.relu(bias, name=scope)
# 输出conv1的信息
print_activation(conv1)
# 添加参数
parameters += [kernel, biases]
# 1th CL ending # add 1th LRN layer and max-pooling layer starting
# depth_radius设为4,lrn可以选择不用,效果待测试
lrn1 = tf.nn.lrn(conv1, 4, bias=1.0, alpha=0.001/9, beta=0.75, name='lrn1')
# 池化:尺寸3x3(将3x3的大小的像素块降为1x1 步长为2x2 VALID表示取样不超过边框)
pool1 = tf.nn.max_pool(lrn1, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='VALID', name='pool1')
print_activation(pool1)
# add 1th LRN layer and max-pooling layer ending # designing second Convolutional Layer starting
with tf.name_scope('conv2') as scope:
# 不同第一卷积层,这层卷积核尺寸5x5,通道为上层输出通道数(即卷积核数)64
# 卷积核数量为192
kernel = tf.Variable(tf.truncated_normal([5, 5, 64, 192],
dtype=tf.float32, stddev=1e-1), name='weights')
# 卷积步长为1,即扫描全部图像
conv = tf.nn.conv2d(pool1, kernel, [1, 1, 1, 1], padding='SAME')
biases = tf.Variable(tf.constant(0.0, shape=[192],
dtype=tf.float32), trainable=True, name='biases')
bias = tf.nn.bias_add(conv, biases)
conv2 = tf.nn.relu(bias, name=scope)
parameters += [kernel, biases]
print_activation(conv2)
# designing 2th CL ending # add 2th LRN layer and max-pooling layer starting
lrn2 = tf.nn.lrn(conv2, 4, bias=1.0, alpha=0.001 / 9, beta=0.75, name='lrn2')
pool2 = tf.nn.max_pool (lrn2, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='VALID', name='pool2')
print_activation(pool2)
# add 2th LRN layer and max-pooling layer ending # designing 3th Convolutional Layer starting
with tf.name_scope('conv3') as scope:
# 卷积核尺寸3x3 通道数192 卷积核384
kernel = tf.Variable(tf.truncated_normal([3, 3, 192, 384],
dtype=tf.float32, stddev=1e-1), name='weights')
conv = tf.nn.conv2d(pool2, kernel, [1, 1, 1, 1], padding='SAME')
biases = tf.Variable(tf.constant(0.0, shape=[384],
dtype=tf.float32), trainable=True, name='biases')
bias = tf.nn.bias_add(conv, biases)
conv3 = tf.nn.relu(bias, name=scope)
parameters += [kernel, biases]
print_activation(conv3)
# designing 3th CL ending # designing 4th CL starting
with tf.name_scope('conv4') as scope:
# 卷积核尺寸3x3 通道数384 卷积核降为256
kernel = tf.Variable(tf.truncated_normal([3, 3, 384, 256],
dtype=tf.float32, stddev=1e-1), name='weights')
conv = tf.nn.conv2d(conv3, kernel, [1, 1, 1, 1], padding='SAME')
biases = tf.Variable(tf.constant(0.0, shape=[256],
dtype=tf.float32), trainable=True, name='biases')
bias = tf.nn.bias_add(conv, biases)
conv4 = tf.nn.relu(bias, name=scope)
parameters += [kernel, biases]
print_activation(conv4)
# designing fourth Convolutional Layer ending # designing fifth Convolutional Layer starting
with tf.name_scope('conv4') as scope:
# 卷积核尺寸3x3 通道数256 卷积核256
kernel = tf.Variable(tf.truncated_normal([3, 3, 256, 256],
dtype=tf.float32, stddev=1e-1), name='weights')
conv = tf.nn.conv2d(conv4, kernel, [1, 1, 1, 1], padding='SAME')
biases = tf.Variable(tf.constant(0.0, shape=[256],
dtype=tf.float32), trainable=True, name='biases')
bias = tf.nn.bias_add(conv, biases)
conv5 = tf.nn.relu(bias, name=scope)
parameters += [kernel, biases]
print_activation(conv5)
# designing fifth Convolutional Layer ending pool5 = tf.nn.max_pool(conv5, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1],
padding='VALID', name='pool5')
print_activation (pool5) return pool5, parameters # 评估每轮的计算时间
# session是训练句柄,target是训练算子,info_string是测试名称
def time_tensorflow_run(session, target, info_string):
# 只考虑预热轮数10轮之后的时间
num_steps_burn_in = 10
# 总时间
total_duration = 0.0
# 平方和
total_duration_squared = 0.0
for i in range(num_batches + num_steps_burn_in):
start_time = time.time()
_ = session.run(target)
duration = time.time() - start_time
if i >= num_steps_burn_in:
if not i % 10:
print('%s: step %d, duration = %.3f' %
(datetime.now(), i - num_steps_burn_in, duration))
total_duration += duration
total_duration_squared += duration * duration # 计算平均耗时mn 标准差sd
mn = total_duration / num_batches
vr = total_duration_squared / num_batches - mn * mn
sd = math.sqrt(vr)
print('%s: %s across %d steps, %.3f +/- %.3f sec / batch' %
(datetime.now(), info_string, num_batches, mn, sd)) # 主函数
def run_benchmark():
g = tf.Graph ()
# 定义默认Graph
with g.as_default():
# 构造随机数据
image_size = 224
images = tf.Variable(tf.random_normal(
[batch_size, image_size, image_size, 3],
dtype=tf.float32, stddev=1e-1 )) pool5, parameters = inference(images) init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init) # 统计运行时间
time_tensorflow_run(sess, pool5, "Forward") objective = tf.nn.l2_loss(pool5)
grad = tf.gradients(objective, parameters)
time_tensorflow_run(sess, grad, "Forward-backward") # 执行主函数
run_benchmark()

下面是我的运行结果:

然后是不带LRN的版本:

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time : 2018/11/20 10:42
# @Author : Chen Cjv
# @Site : http://www.cnblogs.com/cjvae/
# @File : AlexNet.py
# @Software: PyCharm
import os
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
from datetime import datetime
import math
import time
import tensorflow as tf batch_size = 32
num_batches = 100 # 展示每一个卷积层或池化层输出的tensor的尺寸,接收一个tensor输入
def print_activation(t):
print(t.op.name, '', t.get_shape().as_list()) def inference(images):
# 训练的模型参数
parameters = [] # 1th CL starting
with tf.name_scope('conv1') as scope:
# 截断正态分布初始化卷积核参数
# 卷积核尺寸11 x 11 颜色3通道 卷积核64
kernel = tf.Variable(tf.truncated_normal([11, 11, 3, 64],
dtype=tf.float32, stddev=1e-1), name='weights')
# 实现卷积操作,步长4x4(在图像上每4x4区域取样一次,每次取样卷积核大小为11x11)
conv = tf.nn.conv2d(images, kernel, [1, 4, 4, 1], padding='SAME')
# 卷积偏置为0
biases = tf.Variable(tf.constant(0.0, shape=[64], dtype=tf.float32),
trainable=True, name='biases')
# 将卷积结果与偏置相加
bias = tf.nn.bias_add(conv, biases)
# 对结果非线性处理
conv1 = tf.nn.relu(bias, name=scope)
# 输出conv1的信息
print_activation(conv1)
# 添加参数
parameters += [kernel, biases]
# 1th CL ending # add 1th max-pooling layer starting
# 池化:尺寸3x3(将3x3的大小的像素块降为1x1 步长为2x2 VALID表示取样不超过边框)
pool1 = tf.nn.max_pool (conv1, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1],
padding='VALID', name='pool1')
print_activation(pool1)
# add max-pooling layer ending # designing second Convolutional Layer starting
with tf.name_scope('conv2') as scope:
# 不同第一卷积层,这层卷积核尺寸5x5,通道为上层输出通道数(即卷积核数)64
# 卷积核数量为192
kernel = tf.Variable(tf.truncated_normal([5, 5, 64, 192],
dtype=tf.float32, stddev=1e-1), name='weights')
# 卷积步长为1,即扫描全部图像
conv = tf.nn.conv2d(pool1, kernel, [1, 1, 1, 1], padding='SAME')
biases = tf.Variable(tf.constant(0.0, shape=[192],
dtype=tf.float32), trainable=True, name='biases')
bias = tf.nn.bias_add(conv, biases)
conv2 = tf.nn.relu(bias, name=scope)
parameters += [kernel, biases]
print_activation(conv2)
# designing 2th CL ending # add 2th max-pooling layer starting
pool2 = tf.nn.max_pool (conv2, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1],
padding='VALID', name='pool2')
print_activation(pool2)
# add 2th max-pooling layer ending # designing 3th Convolutional Layer starting
with tf.name_scope('conv3') as scope:
# 卷积核尺寸3x3 通道数192 卷积核384
kernel = tf.Variable(tf.truncated_normal([3, 3, 192, 384],
dtype=tf.float32, stddev=1e-1), name='weights')
conv = tf.nn.conv2d(pool2, kernel, [1, 1, 1, 1], padding='SAME')
biases = tf.Variable(tf.constant(0.0, shape=[384],
dtype=tf.float32), trainable=True, name='biases')
bias = tf.nn.bias_add(conv, biases)
conv3 = tf.nn.relu(bias, name=scope)
parameters += [kernel, biases]
print_activation(conv3)
# designing 3th CL ending # designing 4th CL starting
with tf.name_scope('conv4') as scope:
# 卷积核尺寸3x3 通道数384 卷积核降为256
kernel = tf.Variable(tf.truncated_normal([3, 3, 384, 256],
dtype=tf.float32, stddev=1e-1), name='weights')
conv = tf.nn.conv2d(conv3, kernel, [1, 1, 1, 1], padding='SAME')
biases = tf.Variable(tf.constant(0.0, shape=[256],
dtype=tf.float32), trainable=True, name='biases')
bias = tf.nn.bias_add(conv, biases)
conv4 = tf.nn.relu(bias, name=scope)
parameters += [kernel, biases]
print_activation(conv4)
# designing fourth Convolutional Layer ending # designing fifth Convolutional Layer starting
with tf.name_scope('conv4') as scope:
# 卷积核尺寸3x3 通道数256 卷积核256
kernel = tf.Variable(tf.truncated_normal([3, 3, 256, 256],
dtype=tf.float32, stddev=1e-1), name='weights')
conv = tf.nn.conv2d(conv4, kernel, [1, 1, 1, 1], padding='SAME')
biases = tf.Variable(tf.constant(0.0, shape=[256],
dtype=tf.float32), trainable=True, name='biases')
bias = tf.nn.bias_add(conv, biases)
conv5 = tf.nn.relu(bias, name=scope)
parameters += [kernel, biases]
print_activation(conv5)
# designing fifth Convolutional Layer ending pool5 = tf.nn.max_pool(conv5, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1],
padding='VALID', name='pool5')
print_activation (pool5) return pool5, parameters # 评估每轮的计算时间
# session是训练句柄,target是训练算子,info_string是测试名称
def time_tensorflow_run(session, target, info_string):
# 只考虑预热轮数10轮之后的时间
num_steps_burn_in = 10
# 总时间
total_duration = 0.0
# 平方和
total_duration_squared = 0.0
for i in range(num_batches + num_steps_burn_in):
start_time = time.time()
_ = session.run(target)
duration = time.time() - start_time
if i >= num_steps_burn_in:
if not i % 10:
print('%s: step %d, duration = %.3f' %
(datetime.now(), i - num_steps_burn_in, duration))
total_duration += duration
total_duration_squared += duration * duration # 计算平均耗时mn 标准差sd
mn = total_duration / num_batches
vr = total_duration_squared / num_batches - mn * mn
sd = math.sqrt(vr)
print('%s: %s across %d steps, %.3f +/- %.3f sec / batch' %
(datetime.now(), info_string, num_batches, mn, sd)) # 主函数
def run_benchmark():
g = tf.Graph ()
# 定义默认Graph
with g.as_default():
# 构造随机数据
image_size = 224
images = tf.Variable(tf.random_normal(
[batch_size, image_size, image_size, 3],
dtype=tf.float32, stddev=1e-1 )) pool5, parameters = inference(images) init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init) # 统计运行时间
time_tensorflow_run(sess, pool5, "Forward") objective = tf.nn.l2_loss(pool5)
grad = tf.gradients(objective, parameters)
time_tensorflow_run(sess, grad, "Forward-backward") # 执行主函数
run_benchmark()

运行结果:

从两个版本可见,带有LRN层的AlexNet训练时间比较长,据说效果有待商榷。

《TensorFlow实战》中AlexNet卷积神经网络的训练中的更多相关文章

  1. TensorFlow 实战之实现卷积神经网络

    本文根据最近学习TensorFlow书籍网络文章的情况,特将一些学习心得做了总结,详情如下.如有不当之处,请各位大拿多多指点,在此谢过. 一.相关性概念 1.卷积神经网络(ConvolutionNeu ...

  2. TensorFlow 2.0 深度学习实战 —— 浅谈卷积神经网络 CNN

    前言 上一章为大家介绍过深度学习的基础和多层感知机 MLP 的应用,本章开始将深入讲解卷积神经网络的实用场景.卷积神经网络 CNN(Convolutional Neural Networks,Conv ...

  3. 使用TensorFlow v2.0构建卷积神经网络

    使用TensorFlow v2.0构建卷积神经网络. 这个例子使用低级方法来更好地理解构建卷积神经网络和训练过程背后的所有机制. CNN 概述 MNIST 数据集概述 此示例使用手写数字的MNIST数 ...

  4. 斯坦福NLP课程 | 第11讲 - NLP中的卷积神经网络

    作者:韩信子@ShowMeAI,路遥@ShowMeAI,奇异果@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/36 本文地址:http://www. ...

  5. 理解NLP中的卷积神经网络(CNN)

    此篇文章是Denny Britz关于CNN在NLP中应用的理解,他本人也曾在Google Brain项目中参与多项关于NLP的项目. · 翻译不周到的地方请大家见谅. 阅读完本文大概需要7分钟左右的时 ...

  6. TensorFlow深度学习实战---图像识别与卷积神经网络

    全连接层网络结构:神经网络每两层之间的所有结点都是有边相连的. 卷积神经网络:1.输入层 2.卷积层:将神经网络中的每一个小块进行更加深入地分析从而得到抽象程度更高的特征. 3 池化层:可以认为将一张 ...

  7. TensorFlow 深度学习笔记 卷积神经网络

    Convolutional Networks 转载请注明作者:梦里风林 Github工程地址:https://github.com/ahangchen/GDLnotes 欢迎star,有问题可以到Is ...

  8. 【深度学习与TensorFlow 2.0】卷积神经网络(CNN)

    注:在很长一段时间,MNIST数据集都是机器学习界很多分类算法的benchmark.初学深度学习,在这个数据集上训练一个有效的卷积神经网络就相当于学习编程的时候打印出一行“Hello World!”. ...

  9. 机器学习与Tensorflow(4)——卷积神经网络与tensorflow实现

    1.标准卷积神经网络 标准的卷积神经网络由输入层.卷积层(convolutional layer).下采样层(downsampling layer).全连接层(fully—connected laye ...

随机推荐

  1. GUI的最终选择 Tkinter(五):Text用法

    Text组件 绘制单行文本使用Label组件,多行选使用Listbox,输入框使用Entry,按钮使用Button组件,还有Radiobutton和Checkbutton组件用于提供单选或多选的情况, ...

  2. 在SpringBoot中使用Docker(利用dockerfile-maven-plugin插件)

    周末在家做了一个实验: 将Docker通过插件的方式集成到SpringBoot中 然后通过Maven命令根据项目中的Dockerfile自动生成Docker镜像,同时将镜像推送到远程Linux服务器( ...

  3. Java面向对象_数据结构之链表

    链表:是一种常见的基础数据结构,是一种线性表,但是并不会按线性的顺序存储数据,而是在每一个节点里村到下一个节点的指针. 在链表数据结构中,需要使用到递归算法.递归算法是一种直接或间接地调用自身算法的过 ...

  4. 性能测试学习第四天_Loadrunner概述

    1.Loadrunner的组成部分 ·脚本生成器VuGen:virtual user generator ·压力控制器Controller,License主要在这里控制 ·结果分析软件Analysis ...

  5. Dos窗口一闪而过,如何查看错误?

    问:Dos窗口一闪而过,如何查看错误? 答:在执行程序最后追加pause或者read(,),即可查看错误信息.

  6. git 使用流程 命令

    克隆远程分支到本地 git clone <https://github.com/cqzyl/methods.js.git> 进入master分支 git checkout master 以 ...

  7. #include stdio.h(1)

    #include <stdio.h> int main() { //************一.运算符********** //1.赋值运算符 = ; //赋值运算符表示的是将等号右边的赋 ...

  8. Eucalyptus管理页面密码设置

    桉树环境什么的都已经是配置好了的,但是过了一段时间不用,也不知道密码是什么了,看着下面的页面也不知道如何进去,这里我们通过命令行的方式重置用户名和密码信息. 登陆clc所在机器,输入下命令: euar ...

  9. Java Web中web.xml文件简单介绍

    参考博客: https://www.cnblogs.com/Y-oung/p/8401549.html 1.XML 声明和根元素 <?xml version="1.0" en ...

  10. CentOS-7系统安装配置

    CentOS 7 系统安装配置 服务器相关设置如下: 操作系统:CentOS 7.3.1611 IP地址:192.168.3.30 网关:192.168.3.1 DNS:8.8.8.8 8.8.4.4 ...