log(A/B) = logA -logB
令 X = logA, Y = logB, Z=log(A/B) 。2x = A, 2y = B, 2z = A/B, 则有 2z = A/B = 2x / 2y = 2x-y ,有z = x-y,即 log(A/B) = logA - logB。
log(A/B) = logA -logB的更多相关文章
- logAB = logA + logB; A,B>0
令 X = logA, Y = logB, Z=logAB .2x = A, 2y = B, 2z = AB, 则有 2z = AB = 2x * 2y = 2x+y ,有z = x+y,即 logA ...
- js简单模仿队列
window.meng = window.meng || {}; (function () { var items = []; meng.queue = { /** * * @param {Funct ...
- URAL 1807
题目大意:给出一个正整数n(n为合数),求n的一个划分(a1,a2,...,ak,...)(k>=2).使得其在存在最大的最大公约数之下,存在最大的最小公倍数. KB 64bit IO ...
- POJ 3308 最少点集覆盖
题意:和Uva 11419 类似. 首先最少点集覆盖 = 最大匹配. 我们可以在 S 和行 的边 不是1,有了权值,但是题意要求的是乘积最小,那么可以用 log(a*b) = loga + logb ...
- Round 0: Regionals 2010 :: NEERC Eastern Subregional
Round 0: Regionals 2010 :: NEERC Eastern Subregional 贴吧题解(官方)? 网上的题解 水 A Murphy's Law 题意:Anka拿着一块涂着黄 ...
- mysql关于列转行的想法,以及列求乘集
mysql列转行可以通过concat,先分组然后连接. show VARIABLES like '%group%' select @@group_concat_max_len SELECT GROUP ...
- 算法设计手冊(第2版)读书笔记, Springer - The Algorithm Design Manual, 2ed Steven S.Skiena 2008
The Algorithm Design Manual, 2ed 跳转至: 导航. 搜索 Springer - The Algorithm Design Manual, 2ed Steven S.Sk ...
- 分布式Ruby解决之道
其实用Druby很久了,今天需要完成一个进程数据同步的机制,我需要的不是运行速度快,不是用 linux / mac 下的扩展,而是独立,快速开发效率,方便最简单的Ruby环境可运行,可以吗? DRb( ...
- POJ - 3308 Paratroopers(最大流)
1.这道题学了个单词,product 还有 乘积 的意思.. 题意就是在一个 m*n的矩阵中,放入L个敌军的伞兵,而我军要在伞兵落地的瞬间将其消灭.现在我军用一种激光枪组建一个防御系统,这种枪可以安装 ...
随机推荐
- 查看,检查,修复pg的命令
标签(空格分隔): ceph,ceph运维,pg 如果集群状态是HEALTH_ERR 并且有pgs inconsistent,需要进行如下操作: 1. 通过下面的命令查看哪些pg状态不一致: # ce ...
- Java常见设计模式之责任链模式
原文地址: http://www.cnblogs.com/java-my-life/archive/2012/05/28/2516865.html 在阎宏博士的<JAVA与模式>一书中开 ...
- python 基础 列表生成式
data = {'a':'abc';'b':'bac','c':'cba'} [v for k,v in data] 结果 ['abc','bca','cba'] 格式 [x for x in 内容 ...
- Java探索之旅(9)——数据和方法的可见性
注意,在UML图中,public-protected-private分别用+,-,#表示. 类中成员修饰符 在同一类访问 在同一包访问 在子类内访问 在不同包可访问 Public √ √ √ √ Pr ...
- 阿里巴巴Druid数据库连接池的使用
准备: 创建一个基于SpringBoot的web项目 1 引入相关依赖 jpa.mysql.druid <?xml version="1.0" encoding=" ...
- LeetCode: 453 Minimum Moves to Equal Array Elements(easy)
题目: Given a non-empty integer array of size n, find the minimum number of moves required to make all ...
- Google Coral Edge TPU USB加速棒上手体验
Edge AI是什么?它为何如此重要? 传统意义上,AI解决方案需要强大的并行计算处理能力,长期以来,AI服务都是通过联网在线的云端基于服务器的计算来提供服务.但是具有实时性要求的AI解决方案需要在设 ...
- SpringBoot第五篇:整合Mybatis
作者:追梦1819 原文:https://www.cnblogs.com/yanfei1819/p/10869315.html 版权声明:本文为博主原创文章,转载请附上博文链接! 引言 ORM框架 ...
- Beta博客总结
描述项目预期计划和现实进展 冲刺 时间 预期任务以及预估时间 现实完成情况以及实际用时 冲刺1 12.4 修改等级答题界面:30,修改获取用户信息接口:30 修改等级答题界面:60,修改获取用户信息接 ...
- 2017-10-3 清北刷题冲刺班p.m
a [问题描述]你是能看到第一题的 friends 呢.——hja给你一个只有小括号和中括号和大括号的括号序列,问该序列是否合法.[输入格式]一行一个括号序列.[输出格式]如果合法,输出 OK,否则输 ...