传送门

题目大意

问讲一个大小为4*n的棋盘用无数1*2的骨牌不重叠覆盖有多少种方案。

分析

我们考虑可以将长为n的棋盘分为两块,一个大小为n-i,另一个大小为i,而为了避免对于不同的i构造出相同的情况,我们必须使长为i的那一半棋盘是一种不可分离的情况,即对于这种情况去掉其中的任意一行均不合法。我们设对于长为n的棋盘方案数为f(n),长为n的棋盘的不可分离棋盘的数量为a[n]。我们自己画一画可以得到a[1]=1,a[2]=4,a[3]=2,a[4]=3,a[5]=2,a[6]=3,不难发现当n>=2是如果n为奇数a[n]=2,否则a[n]=3。

所以我们可以得到

f(n)=f(n-1)+4f(n-2)+2f(n-3)+3f(n-4)+2f(n-5)+3f(n-6)......

我们发现

f(n-3)+4f(n-4)+2f(n-5)+3f(n-6)......=f(n-2)

所以我们可以把公式变为

f(n)=f(n-1)+5f(n-2)+f(n-3)-f(n-4)

然后我们便可以推出矩阵了。详见代码。

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<cctype>
#include<cmath>
#include<cstdlib>
#include<queue>
#include<ctime>
#include<vector>
#include<set>
#include<map>
#include<stack>
using namespace std;
int n,m;
struct mat {
int g[][];
};
inline mat operator * (const mat a,const mat b){
mat c;
for(int i=;i<=;i++)
for(int j=;j<=;j++){
int x=;
for(int k=;k<=;k++)
x=(x+a.g[i][k]*b.g[k][j]%m)%m;
c.g[i][j]=x;
}
return c;
}
inline int pw(int p){
mat a,res;
for(int i=;i<=;i++)
for(int j=;j<=;j++)
a.g[i][j]=;
a.g[][]=a.g[][]=a.g[][]=a.g[][]=a.g[][]=;
a.g[][]=;a.g[][]=-;
res=a;
while(p){
if(p&)res=res*a;
a=a*a;
p>>=;
}
int ans=((res.g[][]*%m+m)%m+(res.g[][]*%m+m)%m+
(res.g[][]*%m+m)%m+(res.g[][]%m+m)%m)%m;
return ans;
}
int main(){
scanf("%d%d",&n,&m);
while(n&&m){
if(n<=){
if(n==)cout<<%m<<endl;
else if(n==)cout<<%m<<endl;
else if(n==)cout<<%m<<endl;
else cout<<%m<<endl;
}else printf("%d\n",pw(n-));
scanf("%d%d",&n,&m);
}
return ;
}

poj3420 Quad Tiling的更多相关文章

  1. POJ3420 Quad Tiling DP + 矩阵高速幂

    题目大意是用1*2的骨牌堆积成4*N的矩形.一共同拥有多少种方法,N不超过10^9. 这题和以前在庞果网上做过的一道木块砌墙差点儿一样. 由于骨牌我们能够横着放.竖着放.我们如果以4为列,N为行这样去 ...

  2. [POJ 3420] Quad Tiling

      Quad Tiling Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 3495   Accepted: 1539 Des ...

  3. 【poj3420】 Quad Tiling

    http://poj.org/problem?id=3420 (题目链接) 题意 给出$n*m$的网格,用$1*2$的方块覆盖有多少种方案. Solution 数据很大,不能直接搞了,我们矩乘一下.0 ...

  4. POJ 3420 Quad Tiling (矩阵乘法)

    [题目链接] http://poj.org/problem?id=3420 [题目大意] 给出一个4*n的矩阵,求用1*2的骨牌填满有多少方案数 [题解] 弄出不同情况的继承关系,用矩阵递推即可. [ ...

  5. poj 3420 Quad Tiling (状压dp+多米诺骨牌问题+矩阵快速幂)

    还有这种操作?????? 直接用pre到now转移的方式构造一个矩阵就好了. 二进制长度为m,就构造一个长度为1 << m的矩阵 最后输出ans[(1 << m) - 1][( ...

  6. POJ3420Quad Tiling(矩阵快速幂)

    Quad Tiling Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 3740 Accepted: 1684 Descripti ...

  7. 别人整理的DP大全(转)

    动态规划 动态规划 容易: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ...

  8. dp题目列表

    此文转载别人,希望自己能够做完这些题目! 1.POJ动态规划题目列表 容易:1018, 1050, 1083, 1088, 1125, 1143, 1157, 1163, 1178, 1179, 11 ...

  9. ACM 矩阵题目整理

    先从最基础的矩阵快速幂加速递推开始. HDU 1005 Number Sequence |f[n-2],f[n-1]|* |0 B| =|f[n-1], B*f[n-2]+A*f[n-1]|=|f[n ...

随机推荐

  1. C++string类整理

    string类 string类 头文件:#include<string> 名称空间:using namespace std; 初始化: string Str; String类的构造函数和析 ...

  2. map的内存分配机制分析

    该程序演示了map在形成的时候对内存的操作和分配. 因为自己对平衡二叉树的创建细节理解不够,还不太明白程序所显示的日志.等我明白了,再来修改这个文档. /* 功能说明: map的内存分配机制分析. 代 ...

  3. Python 2.7_利用xpath语法爬取豆瓣图书top250信息_20170129

    大年初二,忙完家里一些事,顺带有人交流爬取豆瓣图书top250 1.构造urls列表 urls=['https://book.douban.com/top250?start={}'.format(st ...

  4. UGUI性能优化

    http://www.cnblogs.com/suoluo/p/5417152.html http://blog.csdn.net/uwa4d/article/details/54344423 htt ...

  5. 学习动态性能表(6)--v$session_wait&v$session_event

    学习动态性能表 第六篇-(1)-V$SESSION_WAIT  2007.5.30 这是一个寻找性能瓶颈的关键视图.它提供了任何情况下session在数据库中当前正在等待什么(如果session当前什 ...

  6. Asp.net工作流workflow实战之给书签命名(四)

    之前我们的书签名字是通过手动录入的方式,在实际开发中要在流程设计的时候定义好: namespace EazyBPMS.WorkFlow { public sealed class SetStepAct ...

  7. SQL SERVER存储过程的几种示例

    1.常用系统存储过程及使用语法:exec sp_databases; --查看数据库exec sp_tables; --查看表exec sp_columns student;--查看列exec sp_ ...

  8. java写出进程条代码

    package com.ds; import java.awt.Color; import java.awt.Toolkit; import javax.swing.ImageIcon; import ...

  9. PATL2-007. 家庭房产-并查集

    L2-007. 家庭房产 时间限制 400 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作者 陈越 给定每个人的家庭成员和其自己名下的房产,请你统计出每个 ...

  10. __cdecl & __stdcall calling conventions

    (一) __cdecl: c declaration C语言默认的函数调用方法:所有参数从右到左依次入栈,这些参数由调用者清除,称为手动清栈.C/C++默认的调用方式,可用于函数参数不确定的情况下. ...