OpenCV实践之路——人脸检测(C++/Python) 【转】
转自:http://blog.csdn.net/xingchenbingbuyu/article/details/51105159
版权声明:本文为博主原创文章,转载请联系作者取得授权。
本文由@星沉阁冰不语出品,转载请注明作者和出处。
文章链接:http://blog.csdn.net/xingchenbingbuyu/article/details/51105159
微博:http://weibo.com/xingchenbing
之前一直觉得人脸检测是非常麻烦的,即使是用OpenCV,麻烦到我都不敢去碰。这两天仔细看了下,如果只是调用opencv自带的分类器和函数的话,简直是简单。这不,正好最近也在学习Python,索性就用C++和Python两种语言都实现一下。当然,我现在这个是最简单的版本。
步骤:
调用opencv训练好的分类器和自带的检测函数检测人脸人眼等的步骤简单直接:
1.加载分类器,当然分类器事先要放在工程目录中去。分类器本来的位置是在*\opencv\sources\data\haarcascades(harr分类器,也有其他的可以用,也可以自己训练)
2.调用detectMultiScale()函数检测,调整函数的参数可以使检测结果更加精确。
3.把检测到的人脸等用矩形(或者圆形等其他图形)画出来。
主要函数:
这里面最主要的一个函数就是detectMultiScale()。文档中的解释如下:
1.image表示的是要检测的输入图像
2.objects表示检测到的人脸目标序列
3.scaleFactor表示每次图像尺寸减小的比例
4. minNeighbors表示每一个目标至少要被检测到3次才算是真的目标(因为周围的像素和不同的窗口大小都可以检测到人脸),
5.minSize为目标的最小尺寸
6.minSize为目标的最大尺寸
适当调整4,5,6两个参数可以用来排除检测结果中的干扰项。
程序:
C++程序如下:
- #include<opencv2\opencv.hpp>
- #include <iostream>
- #include <stdio.h>
- using namespace std;
- using namespace cv;
- /** Function Headers */
- void detectAndDisplay(Mat frame);
- /** Global variables */
- String face_cascade_name = "haarcascade_frontalface_default.xml";
- String eyes_cascade_name = "haarcascade_eye_tree_eyeglasses.xml";
- CascadeClassifier face_cascade; //定义人脸分类器
- CascadeClassifier eyes_cascade; //定义人眼分类器
- String window_name = "Capture - Face detection";
- /** @function main */
- int main(void)
- {
- Mat frame = imread("2.jpg");
- //VideoCapture capture;
- //Mat frame;
- //-- 1. Load the cascades
- if (!face_cascade.load(face_cascade_name)){ printf("--(!)Error loading face cascade\n"); return -1; };
- if (!eyes_cascade.load(eyes_cascade_name)){ printf("--(!)Error loading eyes cascade\n"); return -1; };
- //-- 2. Read the video stream
- //capture.open(0);
- //if (!capture.isOpened()) { printf("--(!)Error opening video capture\n"); return -1; }
- //while (capture.read(frame))
- //{
- // if (frame.empty())
- // {
- // printf(" --(!) No captured frame -- Break!");
- // break;
- // }
- //-- 3. Apply the classifier to the frame
- detectAndDisplay(frame);
- int c = waitKey(0);
- if ((char)c == 27) { return 0; } // escape
- //}
- return 0;
- }
- /** @function detectAndDisplay */
- void detectAndDisplay(Mat frame)
- {
- std::vector<Rect> faces;
- Mat frame_gray;
- cvtColor(frame, frame_gray, COLOR_BGR2GRAY);
- equalizeHist(frame_gray, frame_gray);
- //-- Detect faces
- face_cascade.detectMultiScale(frame_gray, faces, 1.1, 3, CV_HAAR_DO_ROUGH_SEARCH, Size(70, 70),Size(100,100));
- for (size_t i = 0; i < faces.size(); i++)
- {
- //Point center(faces[i].x + faces[i].width / 2, faces[i].y + faces[i].height / 2);
- //ellipse(frame, center, Size(faces[i].width / 2, faces[i].height / 2), 0, 0, 360, Scalar(255, 0, 255), 4, 8, 0);
- rectangle(frame, faces[i],Scalar(255,0,0),2,8,0);
- Mat faceROI = frame_gray(faces[i]);
- std::vector<Rect> eyes;
- //-- In each face, detect eyes
- eyes_cascade.detectMultiScale(faceROI, eyes, 1.1, 1, CV_HAAR_DO_ROUGH_SEARCH, Size(3, 3));
- for (size_t j = 0; j < eyes.size(); j++)
- {
- Rect rect(faces[i].x + eyes[j].x, faces[i].y + eyes[j].y, eyes[j].width, eyes[j].height);
- //Point eye_center(faces[i].x + eyes[j].x + eyes[j].width / 2, faces[i].y + eyes[j].y + eyes[j].height / 2);
- //int radius = cvRound((eyes[j].width + eyes[j].height)*0.25);
- //circle(frame, eye_center, radius, Scalar(255, 0, 0), 4, 8, 0);
- rectangle(frame, rect, Scalar(0, 255, 0), 2, 8, 0);
- }
- }
- //-- Show what you got
- namedWindow(window_name, 2);
- imshow(window_name, frame);
- }
Python程序如下:
- import numpy as np
- import cv2
- face_cascade = cv2.CascadeClassifier("/haarcascade_frontalface_default.xml")
- eye_cascade = cv2.CascadeClassifier("/haarcascade_eye_tree_eyeglasses.xml")
- img = cv2.imread("/2.jpg")
- gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
- faces = face_cascade.detectMultiScale(gray,1.1,5,cv2.CASCADE_SCALE_IMAGE,(50,50),(100,100))
- if len(faces)>0:
- for faceRect in faces:
- x,y,w,h = faceRect
- cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2,8,0)
- roi_gray = gray[y:y+h,x:x+w]
- roi_color = img[y:y+h,x:x+w]
- eyes = eye_cascade.detectMultiScale(roi_gray,1.1,1,cv2.CASCADE_SCALE_IMAGE,(2,2))
- for (ex,ey,ew,eh) in eyes:
- cv2.rectangle(roi_color,(ex,ey),(ex+ew,ey+eh),(0,255,0),2)
- cv2.imshow("img",img)
- cv2.waitKey(0)
效果:
最终结果如下图所示:
最近开通了微信公众号,感兴趣的同学可以扫码在微信上交流。
OpenCV实践之路——人脸检测(C++/Python) 【转】的更多相关文章
- cvSmooth函数 和 OpenCV自带的人脸检测
记录cvSmooth函数的用法和 OpenCV自带的人脸检测. (1)cvSmooth函数 void cvSmooth( const CvArr* src, CvArr* dst,int smooth ...
- Python使用OpenCV实现简单的人脸检测
文章目录: OpenCV安装 安装numpy 安装opencv OpenCV使用 OpenCV测试 效果图: 注意: 图片人脸检测 程序要求: 技术实现思路 注意 本文使用的环境是:Windows+P ...
- OpenCV 学习笔记 05 人脸检测和识别
本节将介绍 Haar 级联分类器,通过对比分析相邻图像区域来判断给定图像或子图像与已知对象是否匹配. 本章将考虑如何将多个 Haar 级联分类器构成一个层次结构,即一个分类器能识别整体区域(如人脸) ...
- 人脸检测? 对Python来说太简单, 调用dlib包就可以完成
"Dlib 是一个现代化的 C ++ 工具包,包含用于创建复杂软件的机器学习算法和工具 " .它使您能够直接在 Python 中运行许多任务,其中一个例子就是人脸检测. 安装 dl ...
- 基于OpenCV读取摄像头进行人脸检测和人脸识别
前段时间使用OpenCV的库函数实现了人脸检测和人脸识别,笔者的实验环境为VS2010+OpenCV2.4.4,opencv的环境配置网上有很多,不再赘述.检测的代码网上很多,记不清楚从哪儿copy的 ...
- 调用opencv的接口实现人脸检测(简单)
import cv2 import matplotlib.pyplot as plt %matplotlib inline # 提取预训练的人脸检测模型,提前下载好的模型 face_cascade = ...
- 【从零学习openCV】IOS7根据人脸检测
前言: 人脸检測与识别一直是计算机视觉领域一大热门研究方向,并且也从安全监控等工业级的应用扩展到了手机移动端的app.总之随着人脸识别技术获得突破,其应用前景和市场价值都是不可估量的,眼下在学习ope ...
- OpenCV实践之路——Python的安装和使用
本文由@星沉阁冰不语出品,转载请注明作者和出处. 文章链接:http://blog.csdn.net/xingchenbingbuyu/article/details/50936076 微博:http ...
- OpenCV学习代码记录——人脸检测
很久之前学习过一段时间的OpenCV,当时没有做什么笔记,但是代码都还在,这里把它贴出来做个记录. 代码放在码云上,地址在这里https://gitee.com/solym/OpenCVTest/tr ...
随机推荐
- WPF的线程模型
原文:WPF的线程模型 WPF的线程模型 周银辉 谈到多线程,很多人对其可能都不太有好感,觉得麻烦与易出错.所以我们不排除有这样的情况:假设我对“多线程”.“异步”这些字眼潜意识 ...
- 质数,$\varphi$和$\mu$线性筛
typedef long long ll; bool check[N]; int mu[N],pri[N],tot; ll phi[N]; void init(int lim){ check[]=,p ...
- C17K:Lying Island
链接 题意: 有n个人,每个人可能会说: 第x个人是好人/坏人 如果第x个人是好人/坏人,则第y个人是好人/坏人 思路: 状压dp,首先每个人所说的人只能是他前面10个人,所以对于第i个人记录下,他前 ...
- 03019_过滤器Filter
1.Filter的简介 (1)Filter是对客户端访问资源的过滤,符合条件放行,不符合条件不放行,并且可以对目标资源访问前后进行逻辑处理: (2)快速入门步骤 ①编写一个过滤器的类实现Filter接 ...
- Trident学习笔记(一)
1. Trident入门 Trident ------------------- 三叉戟 storm高级抽象,支持有状态流处理: 好处是确保消费被处理一次: 以小批次方式处理输入流,得到精准一次性处理 ...
- mutable c++
The keyword mutable is used to allow a particular data member of const object to be modified. This i ...
- .net 下word 中的图片与文字分离
最近在做一个项目要求word 中的图片与文字分离 ,找了好久终于找到一个完美的方法 c#实现word中的图文分离 part 1: class define Code highlighting pr ...
- APPIUM-----自动发现兼容的Chromedrivers
使用Appium Desired Capabilities:chromedriverExecutableDir chromeDriver所有版本下载路径:https://chromedriver.st ...
- parameter localparam define的区别
`define 语法格式 `define A 12 //注意不加:不能忘记" ` " 作用区域 在整个工程中均有效,因为它是可以跨模块的定义 parameter 和 localpa ...
- 聊聊、Spring WebApplicationInitializer
说到 WebApplicationInitializer,这个接口是为了实现代码配置 Web 功能.只要实现了这个接口,那么就可以实现 Filter,Servlet,Listener 等配置,跟在 x ...