squeezenet是16年发布的一款轻量级网络模型,模型很小,只有4.8M,可用于移动设备,嵌入式设备。

关于squeezenet的原理可自行阅读论文或查找博客,这里主要解读下pytorch对squeezenet的官方实现。

地址:https://github.com/pytorch/vision/blob/master/torchvision/models/squeezenet.py

首先定义fire模块,这是squeezenet的核心所在,降低3X3卷积的数量。

class Fire(nn.Module):

    def __init__(self, inplanes, squeeze_planes,
expand1x1_planes, expand3x3_planes):
super(Fire, self).__init__()
self.inplanes = inplanes
self.squeeze = nn.Conv2d(inplanes, squeeze_planes, kernel_size=1)#定义压缩层,1X1卷积
self.squeeze_activation = nn.ReLU(inplace=True)
self.expand1x1 = nn.Conv2d(squeeze_planes, expand1x1_planes,#定义扩展层,1X1卷积
kernel_size=1)
self.expand1x1_activation = nn.ReLU(inplace=True)
self.expand3x3 = nn.Conv2d(squeeze_planes, expand3x3_planes,#定义扩展层,3X3卷积
kernel_size=3, padding=1)
self.expand3x3_activation = nn.ReLU(inplace=True) def forward(self, x):
x = self.squeeze_activation(self.squeeze(x))
return torch.cat([
self.expand1x1_activation(self.expand1x1(x)),
self.expand3x3_activation(self.expand3x3(x))
], 1)

可以看到首先定义压缩层与两个扩展层,压缩层用的是1X1卷积,扩展层是1X1卷积和3X3卷积的混合使用,网络inference的脉络是先经过压缩层,然后并行经过两个扩展层,最后将扩展层串联。

定义完核心模块,来看网络整体。

class SqueezeNet(nn.Module):

    def __init__(self, version=1.0, num_classes=1000):
super(SqueezeNet, self).__init__()
if version not in [1.0, 1.1]:
raise ValueError("Unsupported SqueezeNet version {version}:"
"1.0 or 1.1 expected".format(version=version))
self.num_classes = num_classes
if version == 1.0:
self.features = nn.Sequential(
nn.Conv2d(3, 96, kernel_size=7, stride=2),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
Fire(96, 16, 64, 64),
Fire(128, 16, 64, 64),
Fire(128, 32, 128, 128),
nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
Fire(256, 32, 128, 128),
Fire(256, 48, 192, 192),
Fire(384, 48, 192, 192),
Fire(384, 64, 256, 256),
nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
Fire(512, 64, 256, 256),
)
else:
self.features = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=3, stride=2),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
Fire(64, 16, 64, 64),
Fire(128, 16, 64, 64),
nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
Fire(128, 32, 128, 128),
Fire(256, 32, 128, 128),
nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
Fire(256, 48, 192, 192),
Fire(384, 48, 192, 192),
Fire(384, 64, 256, 256),
Fire(512, 64, 256, 256),
)
# Final convolution is initialized differently form the rest
final_conv = nn.Conv2d(512, self.num_classes, kernel_size=1)
self.classifier = nn.Sequential(
nn.Dropout(p=0.5),
final_conv,
nn.ReLU(inplace=True),
nn.AvgPool2d(13, stride=1)
) for m in self.modules():
if isinstance(m, nn.Conv2d):
if m is final_conv:
init.normal_(m.weight, mean=0.0, std=0.01)
else:
init.kaiming_uniform_(m.weight)
if m.bias is not None:
init.constant_(m.bias, 0) def forward(self, x):
x = self.features(x)
x = self.classifier(x)
return x.view(x.size(0), self.num_classes)

首先依然是定义网络层,在这里有两个版本,差别不大,都是fire模块的堆积,最后经过全局平均池化输出1000类。这里对卷积层采用了不同的初始化策略,我还没仔细研究过,就不说了。

pytorch实现squeezenet的更多相关文章

  1. 【转载】PyTorch系列 (二):pytorch数据读取

    原文:https://likewind.top/2019/02/01/Pytorch-dataprocess/ Pytorch系列: PyTorch系列(一) - PyTorch使用总览 PyTorc ...

  2. pytorch预训练

    Pytorch预训练模型以及修改 pytorch中自带几种常用的深度学习网络预训练模型,torchvision.models包中包含alexnet.densenet.inception.resnet. ...

  3. 生产与学术之Pytorch模型导出为安卓Apk尝试记录

    生产与学术 写于 2019-01-08 的旧文, 当时是针对一个比赛的探索. 觉得可能对其他人有用, 就放出来分享一下 生产与学术, 真实的对立... 这是我这两天对pytorch深度学习->a ...

  4. 深度学习框架PyTorch一书的学习-第六章-实战指南

    参考:https://github.com/chenyuntc/pytorch-book/tree/v1.0/chapter6-实战指南 希望大家直接到上面的网址去查看代码,下面是本人的笔记 将上面地 ...

  5. 深度学习框架PyTorch一书的学习-第五章-常用工具模块

    https://github.com/chenyuntc/pytorch-book/blob/v1.0/chapter5-常用工具/chapter5.ipynb 希望大家直接到上面的网址去查看代码,下 ...

  6. (转)Awesome PyTorch List

    Awesome-Pytorch-list 2018-08-10 09:25:16 This blog is copied from: https://github.com/Epsilon-Lee/Aw ...

  7. (转) The Incredible PyTorch

    转自:https://github.com/ritchieng/the-incredible-pytorch The Incredible PyTorch What is this? This is ...

  8. PyTorch源码解读之torchvision.models(转)

    原文地址:https://blog.csdn.net/u014380165/article/details/79119664 PyTorch框架中有一个非常重要且好用的包:torchvision,该包 ...

  9. PyTorch深度学习计算机视觉框架

    Taylor Guo @ Shanghai - 2018.10.22 - 星期一 PyTorch 资源链接 图像分类 VGG ResNet DenseNet MobileNetV2 ResNeXt S ...

随机推荐

  1. javascript 函数,事件

    1.函数字符串函数 var s=new string(); var ss="hello world"; var sss=""HELLO, WORLD" ...

  2. iOS 聊天界面

    #import <UIKit/UIKit.h> @interface AppDelegate : UIResponder <UIApplicationDelegate> @pr ...

  3. 100078D Domestic Networks

    传送门 题目大意 有两种染料,给定它们的单价和数量,每染色一米需耗费一个单位的染料,一条边只能用一种燃料,给你一张图,要求你将其中的一些边染色使得在满足图联通的情况下花费最小并输出方案. 分析 首先, ...

  4. Entity Framework Tutorial Basics(16):Linq-to-Entities Projection Queries

    Linq-to-Entities Projection Queries: Here, you will learn how to write LINQ-to-Entities queries and ...

  5. java全栈day33--html

    本天要完成6个任务,并且布局静态页面(首页)详细分为六个部分  如下 网站信息页面案例(字体标签.排版标签) 网站图片信息页面案例(图片标签) 网站友情链接页面案例(列表标签) 网站首页案例(表格标签 ...

  6. POJ 2836 Rectangular Covering (状压DP)

    题意:平面上有 n (2 ≤ n ≤ 15) 个点,现用平行于坐标轴的矩形去覆盖所有点,每个矩形至少盖两个点,矩形面积不可为0,求这些矩形的最小面积. 析:先预处理所有的矩形,然后dp[s] 表示 状 ...

  7. 多线程学习-基础(四)常用函数说明:sleep-join-yield

    一.常用函数的使用 (1)Thread.sleep(long millis):在指定的毫秒内让当前正在执行的线程休眠(暂停执行),休眠时不会释放当前所持有的对象的锁.(2)join():主线程等待子线 ...

  8. 多线程学习-基础(一)Thread和Runnable实现多线程

    很久没记录一些技术学习过程了,这周周五的时候偶尔打开“博客园”,忽然让我产生一种重拾记录学习过程的想法,记录下学习研究过程的一点一滴,我相信,慢慢地就进步了!最近想学习一下多线程高并发,但是多线程在实 ...

  9. Android二维码扫描功能的集成开发

    二维码开发主要依赖ZXing开源项目 项目地址:https://github.com/zxing/zxing 这个开源项目可以扫描一维,和二维码, 一维码指的是书后面的条形码 首先配置ZXing库和A ...

  10. adb 无法调试的问题,ADB server didn't ACK,* failed to start daemon *

    The connection to adb is down, and a severe error has occured. You must restart adb and Eclipse. Ple ...