【BZOJ4004】[JLOI2015]装备购买 贪心+高斯消元
【BZOJ4004】[JLOI2015]装备购买
Description
Input
Output
一行两个数,第一个数表示能够购买的最多装备数量,第二个数表示在购买最多数量的装备的情况下的最小花费
Sample Input
1 2 3
3 4 5
2 3 4
1 1 2
Sample Output
HINT
题解:又是贪心+高斯消元。。。排序就行了。
不过这题求的不是异或意义下的线性基,所以我们可以转化成模意义下的线性基,方法差不多(就是容易错啊)。
听说double也能过。。。
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define mod 1000000007
using namespace std;
typedef long long ll;
int n,m,ans,tot;
struct item
{
ll v[510];
int cost;
}s[510];
int vis[510];
bool cmp(item a,item b)
{
return a.cost<b.cost;
}
int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-')f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret*f;
}
ll pm(ll x,ll y)
{
ll z=1;
while(y)
{
if(y&1) z=z*x%mod;
x=x*x%mod,y>>=1;
}
return z;
}
int main()
{
n=rd(),m=rd();
int i,j,k,l;
for(i=1;i<=n;i++) for(j=1;j<=m;j++) s[i].v[j]=rd();
for(i=1;i<=n;i++) s[i].cost=rd();
sort(s+1,s+n+1,cmp);
ll t;
for(i=1;i<=m;i++)
{
for(k=0,j=1;j<=n;j++) if(!vis[j]&&s[j].v[i])
{
k=j,vis[j]=1,ans+=s[j].cost;
break;
}
if(!k) continue;
tot++;
t=pm(s[k].v[i],mod-2);
for(j=i;j<=m;j++) s[k].v[j]=s[k].v[j]*t%mod;
for(j=1;j<=n;j++) if(j!=k&&s[j].v[i])
{
t=s[j].v[i];
for(l=1;l<=m;l++) s[j].v[l]=(s[j].v[l]-t*s[k].v[l]%mod+mod)%mod;
}
}
printf("%d %d",tot,ans);
return 0;
}
【BZOJ4004】[JLOI2015]装备购买 贪心+高斯消元的更多相关文章
- 【bzoj4004】[JLOI2015]装备购买 贪心+高斯消元求线性基
题目描述 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) 表示 (1 <= i <= n; 1 <= j < ...
- P3265 [JLOI2015]装备购买(高斯消元+贪心,线性代数)
题意; 有n个装备,每个装备有m个属性,每件装备的价值为cost. 小哥,为了省钱,如果第j个装备的属性可以由其他准备组合而来.比如 每个装备属性表示为, b1, b2.......bm . 它可以由 ...
- [JLOI2015]装备购买 (高斯消元)
[JLOI2015]装备购买 \(solution:\) 首先这道题的题面已经非常清晰的告诉我们这就是线性空间高斯消元的一道题(可以用某些装备来表示另一件装备,这已经不能再明显了),只是这道题要求我们 ...
- BZOJ4004 [JLOI2015]装备购买[贪心+线性基+高消]
一个物品可以被其他物品表出,说明另外的每个物品看成矩阵的一个行向量可以表出该物品代表的行向量. 于是构造矩阵,求最多选多少个物品,就是尽可能用已有的物品去表示,相当于去消去一些没必要物品, 类似于xo ...
- AcWing 209. 装备购买 (高斯消元线性空间)打卡
脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量z[i]=(ai,1,ai,2,..,ai,m)z[i]=(ai,1,ai,2,..,ai,m) 表示,每个装备需要 ...
- 【BZOJ 4004】 装备购买(高斯消元+贪心)
装备购买 题目 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) 表示 (1 <= i <= n; 1 <= j ...
- [BZOJ4004][JLOI2015]装备购买(贪心+线性基)
求最小权极大线性无关组. 先将所有向量按权值排序,从小到大依次判断,若能被前面已选向量线性表出则不选,这样一定最优. 据说是用拟阵来证明,但感性理解一下感觉比较显然,首先这样个数一定是最多的,其次对于 ...
- 线性空间和异或空间(线性基)bzoj4004贪心+高斯消元优秀模板
线性空间:是由一组基底构成的所有可以组成的向量空间 对于一个n*m的矩阵,高斯消元后的i个主元可以构成i维的线性空间,i就是矩阵的秩 并且这i个主元线性无关 /* 每个向量有权值,求最小权极大线性无关 ...
- 【题解】 bzoj4004: [JLOI2015]装备购买 (线性基)
bzoj4004,戳我戳我 Solution: 裸的线性基,这没啥好说的,我们说说有意思的地方(就是我老是wa的地方) Attention: 这题在\(luogu\),上貌似不卡精度,\(bzoj\) ...
随机推荐
- vsftp 服务配置
在CentOS或者RedHat Linux上有自带的ftp软件叫做vsftpd (very serure ftp) 搭建vsftpd 服务 yum 安装需要用两个包:vsftpd 和 db4-util ...
- Linux操作系统实时性分析
1. 概述 选择一个合适的嵌入式操作系统,可以考虑以下几个因素: 第一是应用.如果你想开发的嵌入式设备是一个和网络应用密切相关或者就是一个网络设备,那么你应该选择用嵌入式Linux或者uCLinux ...
- java-selenium(一)元素定位
在定位单个元素时,selenium-webdriver 提示了如下一些方法对元素进行定位.下面这些定位方式中,优先使用 id.name.classname,对于网上的链接元素,推荐使用linkText ...
- DataSet之增删改查操作(DataGridView绑定)
DataSet数据集,数据缓存在客户端内存中,支持断开式连接.DataGridView控件绑定DataSet时,它自动的改变的DS的行的状态,而且在做增删改查的时候,可以借助SqlCommandBui ...
- 使用PowerDesigner进行代码生成
很多代码生成器都选择了从表结构来生成领域模型,这样的方案有一个前提,就是领域模型和数据库表结构是同构的,也就是说领域模型中的类和数据库中的记录结构十分吻合,这样数据库表结构可以简单的直接映射到领域模型 ...
- react-native 创建 ios 项目
创建React-Native项目 打开终端输入react-native init ProjectName,这里的ProjectName可以改成你想创建的项目名称.然后有两种方法启动项目 1.从终端开启 ...
- Archlinux风扇设置
在笔记本(ThinkPad T440)连续两天因过热而死机后, 对内核的风扇控制算法果断失去信心. 风扇的用户层控制接口是 /proc/acpi/ibm/fan, 但为防止用户控制不当烧坏机器, 默认 ...
- xml中处理特殊字符和转义字符
XML 中的特殊字符 > 和 开始标记 > 例如: 5 ]] 如何获得这些HTML内容呢? XmlDocument doc = new XmlDocument(); doc.Load(&q ...
- http://m2eclipse.sonatype.org/sites/m2e地址更换了
http://m2eclipse.sonatype.org/sites/m2e 更换为 https://repository.sonatype.org/content/sites/forge-site ...
- 修改pip源为国内网站
import os,sys,platformini="""[global]index-url = https://pypi.doubanio.com/simple/[in ...