一、Spark Core

1. 什么是Spark Shuffle

Wide Dependencies

*ByKey: groupByKey,reduceByKey

关联操作:join,cogroup

窄依赖:

父RDD的每个分区的数据,仅仅只会给子RDD的一个分区。

Spark性能优化:

开发优化:

依据业务场景及数据,使用较好的RDD的方法

(1)能使用reduceByKey不要使用groupByKey

(2)适当的时候已经处理的数据RDD,进行重新分区

repartition

reduceByKey(func, numPartitions)

coalse

SCALA中的拉链编程

val rdd = sc.parallelize(List(1,2,3,4,5))

val rdd2 = sc.parallelize(List("aa", "bb", "cc", "dd", "ee"))

rdd.zip(rdd2)

rdd.zip(rdd2).collect

2. MapReduce Shuffle

Spark Stages

(1)ResultStage

Stage阶段运行Jobs输出结果

ResultTask

(2)ShuffleMapStage

Stage阶段的RDD会发生Shuffle过程,

ShuffleMapTask

每个Stage中的所有任务的逻辑处理相同(functions)

Spark Scheduler

RDD Objects -> DAGScheduler -> TaskScheduler -> Worker

二、Spark SQL

MapReduce -> Hive

SparkCore -> SparkSQL

1. SQL on Hadoop

(1)Hive

基础,数据仓库,Facebook开源,

(2)Presto

内存,Facebook,依赖于Hive MetaStore

国内:京东

(3)Impala

内存,Cloudera,依赖于Hive MetaStore

应用:电信、游戏

安装方式: RPM包,联网安装,包特别多;CM5.3.x安装CDH5.3.x,包含Impala,界面化安装

(4)Spark SQL

(5)Drill

1PB的数据进行分析查询-> 3s

(6)Kylin

麒麟框架,唯一一个由国人开源的大数据框架,提供中文文档,也是Apache顶级项目

大数据起源搜索引擎,发展于电商互联网,Google三大论文

大数据的前三驾马车: GFS、 MapReduce和BigTable

大数据的后三驾马车: Caffeine、Pregel(Pregel主要绘制大量网上信息之间关系的“图形数据库”)、Dremel

2. SparkSQL

DataFrame = RDD[Row]

封装所有数据,提供一系列方法进行操作。

SQLContext

spark-1.3.0 release

特性: 外部数据源(接口) hive\parquet\orc\json\xml\jdbc\tsv\csv\......

SparkSQL读取文件数据的内容

文件数据格式默认的是parquet格式

Hive引擎:

SQL->Parse(语法解析)->Logical Plan(逻辑计划)->优化LP->Pyhsical Plan(物理计划)

MapReduce

SparkCore

SHark = Spark on Hive   spark 1.0之前

Catalyst: Spark SQL引擎

1)替代Hive

shark

SparkSQL与Hive无缝对接继承

企业中开发经验

(1)Hive对要分析的数据进行ETL操作

数据仓库

(2)SparkSQL进行分析

HiveQL:

val df = sqlContext.sql("select * from emp")

DSL:

val df = sqlContext.table("emp").select("empno")

Spark与Hive继承

从某个角度来说,SparkSQL读取Hive表中的数据,就是Hive客户端

(1)hive-site.xml

metastore存储在哪里?MySQL中

(2)数据库驱动包

3. Catalyst

SQL Text

------Parsing ----->Unsolved Logic Plan

------Binding & Anlyzidng -------> Logical Plan

------Optimizing -----> Optimized Logical Plan

------QueryPlanning ----> Physical Plan

4. 如何将依赖包放入到应用CLASSPATH虾米那

(1)--jars

(2)万能

SPARK_CLASSPTH

《OD学spark》20161022的更多相关文章

  1. 《OD学spark》20160925 Spark Core

    一.引言 Spark内存计算框架 中国Spark技术峰会 十二场演讲 大数据改变世界,Spark改变大数据 大数据: 以Hadoop 2.x为主的生态系统框架(MapReduce并行计算框架) 存储数 ...

  2. 《OD学spark》20160924scala基础

    拓展: Hadoop 3.0 NameNode HA NameNode是Active NameNode是Standby可以有多个 HBase Cluster 单节点故障? HBaster -> ...

  3. 《OD学hive》第四周0717

    一.Hive基本概念.安装部署与初步使用 1. 后续课程 Hive 项目:hadoop hive sqoop flume hbase 电商离线数据分析 CDH Storm:分布式实时计算框架 Spar ...

  4. 《OD学hadoop》20160903某旅游网项目实战

    一.大数据的落地点 1.数据出售 数据商城:以卖数据为公司的核心业务 2. 数据分析 百度统计 友盟 GA IBM analysis 3.搜索引擎 4. 推荐系统 mahout 百分比 5.精准营销 ...

  5. 《OD学HBase》20160821

    一.HBase性能调优 1. JVM内存调优 MemStore内存空间,设置合理大小 memstore.flush.size 刷写大小 134217728 = 128M memstore.mslab. ...

  6. 《OD学Oozie》20160807Oozie

    一.引入 MapReduce Job Hive 脚本任务 同一个业务:先后.定时调度 工作流: 定义工作流程 activity jbpm oozie: 大数据工作流定义与调度框架 专门定义与调度Map ...

  7. 《OD学Flume》20160806Flume和Kafka

    一.Flume http://flume.apache.org/FlumeUserGuide.html Flume是一个分布式的,可靠的,可用的,非常有效率的对大数据量的日志数据进行收集.聚集.移动信 ...

  8. 《OD学hive》第六周20160731

    一.hive的压缩 1. hadoop的压缩 1)为什么需要压缩 MapReduce的性能瓶颈:网络IO.磁盘IO 数据量:对于MapReduce的优化,最主要.根本就是要能够减少数据量 Combin ...

  9. 《OD学hadoop》第三周0709

    一.MapReduce编程模型1. 中心思想: 分而治之2. map(映射)3. 分布式计算模型,处理海量数据4. 一个简单的MR程序需要制定map().reduce().input.output5. ...

随机推荐

  1. zTree获取(子)节点

    var ids=[]; ids=getChildren(ids, treeNode);//TreeNode是选中节点,ids是子节点id数组,格式:123,223,4,55 1.获取直接子节点的id ...

  2. IDT 数据预览查询

    前面做了一件非常愚蠢的事情,由于不会预览数据.我都是直接发布到webi去查看的.可以想象一下了.真是太年轻了.为自己感到十分的汗颜. 在数据基础层做好连接之后,可以查看数据基础 .会显示相应的join ...

  3. (转)gcov、lcov与genhtml 使用心得

    gcc是linux平台下的C.C++ 编译器 gcov是配合gcc产生覆盖信息报告的工具: lcov是将gcov产生的报告信息,以更直观的方式显示出来工具 基本的使用方法分为4个阶段: (一).gcc ...

  4. codeforces 710A A. King Moves(水题)

    题目链接: A. King Moves 题意: 给出king的位置,问有几个可移动的位置; 思路: 水题,没有思路; AC代码: #include <iostream> #include ...

  5. ffmpeg 翻译文档

    ffmpeg 翻译文档 (参考源文件ffmpeg-all 包含重要组件) 目录: 1 命令语法 2 描概览 3 详细说明 4 流的选择(指定) 5 选项 技提示(原版已废弃) 6 例子 7 语法 8 ...

  6. Statement

    题目大意 给定一棵基环外向树,和若干组询问,对于每次独立的询问都指定一些起点和一些终点,你删去一些边,使得从任意起点出发都无法到达终点,并让删去的边的编号的最小值最大,求这个最大的最小值. 题解 不难 ...

  7. NOI2018网络同步赛游记

    Day1 t1是一道NOI选手眼中的送分题,对于我来说还是有难度的,用了个把小时想了出来可持久化并查集的做法,最后一个点被卡常.赛后才发现Kruskal重构树是这样的简单.t2.t3由于我真的是太弱了 ...

  8. LeetCode Majority Element I

    原题链接在这里:https://leetcode.com/problems/majority-element/ 题目: Given an array of size n, find the major ...

  9. LeetCode 510. Inorder Successor in BST II

    原题链接在这里:https://leetcode.com/problems/inorder-successor-in-bst-ii/ 题目: Given a binary search tree an ...

  10. 一个Web结合Mybatis项目

    需要引入apache.commons.dbcp-1.2.2.osgi.jar以及org.apache.commons.pool-1.5.3.jar用来提供JDBC的访问: 需要org.springfr ...