Batting Practice LightOJ - 1408
Batting Practice LightOJ - 1408(概率dp)
题意:有无限个球,进球的概率为p,问你连续不进k1个球或者连续进k2个球需要使用的球的个数的期望
思路:
\(定义f[i]表示已经连续不进i个球,还需要连续不进k1-i个球的期望\)
\(g[i]表示已经连续进了i个,还需要连续进k2-i个球的期望\)
显然\(f[k1] = g[k2] = 0\)
\(任意0<=i<k1有f[i] = (1-p) \cdot f[i+1] + p \cdot g[1] + 1\)
\(任意0<=i<k2有g[i] = (1-p) \cdot f[1] + p \cdot g[i+1] + 1\)
不好解的样子,列矩阵高斯消元一发,WA,把eps从1e-6改到1e-15还是过不了,用long double交,时限卡的紧,TLE
搜了一发题解,原来上面那个式子可以直接求通项,依次回代就可以求出f[0]和g[0]了
#include<bits/stdc++.h>
#define LL long long
#define P pair<int,int>
using namespace std;
const double eps = 1e-6;
double a[60][60];
int gauss(int n,int m){
int col,i,mxr,j,row;
for(row=col=0;row<=n&&col<=m;row++,col++){
mxr = row;
for(i=row+1;i<=n;i++)
if(fabs(a[i][col])>fabs(a[mxr][col]))
mxr = i;
if(mxr != row) swap(a[row],a[mxr]);
if(fabs(a[row][col]) < eps){
row--;
continue;
}
for(i=0;i<=n;i++)///消成上三角矩阵
if(i!=row&&fabs(a[i][col])>eps)
for(j=m;j>=col;j--)
a[i][j]-=a[row][j]/a[row][col]*a[i][col];
}
row--;
for(int i = row;i>=0;i--){///回代成对角矩阵
for(int j = i + 1;j <= row;j++){
a[i][m] -= a[j][m] * a[i][j];
}
a[i][m] /= a[i][i];
}
return row;
}
int main()
{
int T;
int cas = 1;
cin>>T;
while(T--)
{
int k1,k2;
double p;
scanf("%lf%d%d",&p,&k1,&k2);
printf("Case %d: ",cas++);
/*
memset(a,0,sizeof(a));
int col = k1 + k2 + 2;
for(int i = 0;i < k1;i++){
a[i][i] = 1;
a[i][i+1] = p - 1;
a[i][k1+2] = -p;
a[i][col] = 1;
}
a[k1][k1] = 1,a[k1][col] = 0;
for(int i = 0;i < k2;i++){
a[k1+1+i][k1+1+i] = 1;
a[k1+1+i][k1+1+i+1] = -p;
a[k1+1+i][1] = p - 1;
a[k1+1+i][col] = 1;
}
a[k1+k2+1][k1+k2+1] = 1,a[k1+k2+1][col] = 0;
int row = gauss(k1+k2+1,k1+k2+2);
printf("%.6f\n",a[0][col]);
*/
if(p < eps) printf("%.6f\n",1.0 * k1);
else if(1 - p < eps) printf("%.6f\n",1.0 * k2);
else{
double q;
q=1-p;
double a1=1-pow(q,k1-1),b1=a1/(1-q);
double a2=1-pow(p,k2-1),b2=a2/(1-p);
double t1=(a1*b2+b1)/(1-a1*a2),f1=a2*t1+b2;
printf("%.6f\n",p*f1+q*t1+1);
}
}
return 0;
}
Batting Practice LightOJ - 1408的更多相关文章
- lightoj 1408 Batting Practice (概率问题,求期望,推公式)
题意:一个人若连续进k1个球或连续不进k2个球,游戏结束,给出这个人不进球的概率p(注意:是不进球!!!),求到游戏结束时这个投球个数的期望. 不进球概率为p,进概率 q=1-p.设 f[i] 表示连 ...
- lightoj 1408 Batting Practice
题意:一个人若连续进k1个球或连续不进k2个球,游戏结束,给出这个人进球的概率p,求到游戏结束时这个投球个数的期望. 进球概率为p,不进概率 q=1-p 设 f[i] 表示连续 i 次不进距离连续k2 ...
- LightOj_1408 Batting Practice
题目链接 题意: 击球训练中, 你击中一个球的概率为p,连续击中k1个球, 或者连续击空k2个球, 则训练结束. 求结束训练所击球次数的期望. 思路: 设f[x]为连续击中x个球, 距离结束训练所需要 ...
- lightoj 1408 概率dp
https://blog.csdn.net/moon_sky1999/article/details/98097470 博主在此,牛逼神犇 #include<bits/stdc++.h> ...
- LightOJ 1341 唯一分解定理
Aladdin and the Flying Carpet Time Limit:3000MS Memory Limit:32768KB 64bit IO Format:%lld &a ...
- lightoj 1370 欧拉函数
A - Bi-shoe and Phi-shoe Time Limit:2000MS Memory Limit:32768KB 64bit IO Format:%lld & % ...
- lightoj 1074 spfa判断负环
Extended Traffic Time Limit:2000MS Memory Limit:32768KB 64bit IO Format:%lld & %llu Sub ...
- lightoj.1048.Conquering Keokradong(二分 + 贪心)
Conquering Keokradong Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%lld & %llu ...
- LightOJ 1234 Harmonic Number
D - Harmonic Number Time Limit:3000MS Memory Limit:32768KB 64bit IO Format:%lld & %llu S ...
随机推荐
- yum 仓库配置
[base]name=aliyum basebaseurl=https://mirrors.aliyun.com/centos/6/os/x86_64/ ...
- Mybatis与Hibernate区别
Mybatis与Hibernate区别 mybatis: 1. 入门简单,即学即用,提供了数据库查询的自动对象绑定功能,而且延续了很好的SQL使用经验,对于没有那么高的对象模型要求的项目来说,相当完美 ...
- .Net Core爬虫爬取妹子网图片
现在网上大把的Python的爬虫教程,很少看见有用C#写的,正好新出的.Net Core可以很方便的部署到Linux上,就用妹子图做示范写个小爬虫 在C#下有个很方便的类库 HtmlAgilityPa ...
- NuGet管理和还原程序包
在很多开源的程序下载下来不能使用,一般都是平台X86 和X64没有修改,还一个就是程序缺少资源包文件.用Nuget还原即可: 一般建议先修改好平台,然后用NuGet还原程序包.
- 【牛客 错题集】Linux系统方面错题合集
前言:牛客Linux322道全部刷完,有些题目较老,甚至考核5系统,现在7都出来了几年了 = = 还有些题目解析的很好部分也摘录了进来.很多涉及嵌入式开发的选择题同样的摘录的作为了解使用 ------ ...
- linux特殊权限位suid
特殊权限位基本说明(了解): linux系统基本权限位为9位权限,但还有额外3位权限位,共12位权限: suid s(x) S 4 用户对应的权限位(用户对应的3位 ...
- JQuery制作网页—— 第一章 JavaScript基础
1. JavaScript(弱类型语言):是一种描述性语言,也是一种基于对象(Object)和事件驱动(Event Driven)的,并具有安全性能的脚本语言. 特点:1.主要用来在HTML页面中添加 ...
- 用PHP关于Jquery表单插件ajaxForm里success不返回问题
简单说一下吧,在用ajaxForm的时候,sucess突然之间不返回了,直接转到error里面去, 网页代码 ................. $('#add-type').ajaxForm({ d ...
- Python 中关于文件操作的注意事项
文件操作 #打开文件 f = open('要打开的文件路径',mode = 'r/w/a', encoding = '文件原来写入时的编码') #操作 data = f.read() #读取 f.wr ...
- Android AppUtil通用类
1.整体分析 1.1.先看一下源码,可以直接Copy. public class AppUtil { /** * 获取当前程序包名 * * @param context 上下文 * @return 程 ...