筛素数

void shai()
{
no[1]=true;no[0]=true;
for(int i=2;i<=r;i++)
{
if(!no[i])
p[++p[0]]=i;
int j=1,t=i*p[1];
while(j<=p[0] && t<=r)
{
no[t]=true;
if(i%p[j]==0) //每一个数字都有最小质因子。这里往后的数都会被筛过的,break
break;
t=i*p[++j];
}
}
}

O(n)筛欧拉函数

void find()
{
phi[1]=1;
for(int i=2;i<=maxn-1;i++)
{
if(!is_prime[i]){prime[++cnt]=i,phi[i]=i-1;}
int j=1,t=2*i;
while(j<=cnt&&t<=maxn-1)
{
is_prime[t]=1;
if(i%prime[j]==0)
{ //欧拉函数公式是phi[i]=i*(1-1/p1)*(1-1/p2)..
phi[t]=phi[i]*prime[j];//质因子同样,仅仅有i不同,且t=prime[j]*i,故作此
break;
}
else phi[t]=phi[i]*(prime[j]-1);//质因子不一样,由于欧拉函数是积性函数,就是
j++;t=prime[j]*i; //=phi[i]*phi[j]
}
}
}

sqrt(n)求单个欧拉函数

long long phi(long long x)
{
long long t=x,l=sqrt(x);
for(long long i=2;i<=l;i++)
if(x%i==0)
{
t=t/i*(i-1); //欧拉函数公式,一定是先除再加
while(x%i==0)
x/=i;
}
if(x>1) //对x大于sqrt(x)的质因子最多有1个
t=t/x*(x-1);
return t;
}

O(n)筛莫比乌斯函数

void shai()
{
no[1]=1;mu[1]=1;
for(int i=2;i<=maxl;i++)
{
if(!no[i])
p[++p[0]]=i,mu[i]=-1;//仅仅有1个质因数,所以为-1
int j=1,t=p[1]*i;
while(j<=p[0] && t<=maxl)
{
no[t]=1;
if(i%p[j]==0)
{
mu[t]=0;//某质因数的指数不为1。依据定义=0
break;
}
mu[t]=-mu[i];//依据定义,当x=p1*p2*..*pk,mu[x]=(-1)^k。
t=p[++j]*i; //这里多一个质因数,自然就多乘一个-1
}
}
}

O(n)求1到n对mod的逆元

转自http://blog.csdn.net/whyorwhnt/article/details/19169035

inv[i] = ( MOD - MOD / i ) * inv[MOD%i] % MOD

证明:

设t = MOD / i , k = MOD % i

则有 t * i + k == 0 % MOD

有 -t * i == k % MOD

两边同一时候除以ik得到

-t * inv[k] == inv[i] % MOD

inv[i] == -MOD / i * inv[MOD%i]

inv[i] == ( MOD - MOD / i) * inv[MOD%i]

证毕

适用于MOD是质数的情况。可以O(n)时间求出1~n对模MOD的逆元

inv[1]=1;
for(long long i=2;i<maxl && i<mod;i++)
inv[i]=(mod-mod/i)*inv[mod%i]%mod;

O(n)求素数,求欧拉函数,求莫比乌斯函数,求对mod的逆元,各种求的更多相关文章

  1. 初等数论-Base-1(筛法求素数,欧拉函数,欧几里得算法)

    前言 初等数论在OI中应用的基础部分,同机房的AuSquare和zhou2003君早就写完了,一直划水偷懒的Hk-pls表示很方,这才开始了这篇博客. \(P.S.\)可能会分部分发表. Base-1 ...

  2. 2019-ACM-ICPC-南昌区网络赛-H. The Nth Item-特征根法求通项公式+二次剩余+欧拉降幂

    2019-ACM-ICPC-南昌区网络赛-H. The Nth Item-特征根法求通项公式+二次剩余+欧拉降幂 [Problem Description] ​ 已知\(f(n)=3\cdot f(n ...

  3. BZOJ 2818 GCD 素数筛+欧拉函数+前缀和

    题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=2818 题意:给定整数N,求1<=x,y<=n且Gcd(x,y)为素数的数对( ...

  4. 转载:Candy? 在线性时间内求出素数与欧拉函数

    转载自:http://www.cnblogs.com/candy99/p/6200660.html 2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MB ...

  5. 【模板】埃拉托色尼筛法 && 欧拉筛法 && 积性函数

    埃拉托色尼筛法 朴素算法 1 vis[1]=1; 2 for (int i=2;i<=n;i++) 3 if (!vis[i]) 4 { 5 pri[++tot]=i; 6 for (int j ...

  6. 由 [SDOI2012]Longge的问题 探讨欧拉函数和莫比乌斯函数的一些性质和关联

    本题题解 题目传送门:https://www.luogu.org/problem/P2303 给定一个整数\(n\),求 \[ \sum_{i=1}^n \gcd(n,i) \] 蒟蒻随便yy了一下搞 ...

  7. 素数筛&&欧拉筛

    折腾了一晚上很水的数论,整个人都萌萌哒 主要看了欧拉筛和素数筛的O(n)的算法 这个比那个一长串英文名的算法的优势在于没有多次计算一个数,也就是说一个数只筛了一次,主要是在%==0之后跳出实现的,具体 ...

  8. 【51nod-1239&1244】欧拉函数之和&莫比乌斯函数之和 杜教筛

    题目链接: 1239:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1239 1244:http://www.51nod. ...

  9. BZOJ4804 欧拉心算(莫比乌斯反演+欧拉函数+线性筛)

    一通套路后得Σφ(d)μ(D/d)⌊n/D⌋2.显然整除分块,问题在于怎么快速计算φ和μ的狄利克雷卷积.积性函数的卷积还是积性函数,那么线性筛即可.因为μ(pc)=0 (c>=2),所以f(pc ...

  10. UVA12493 - Stars(求1-N与N互质的个数)欧拉函数

    Sample Input 3 4 5 18 36 360 2147483647 Sample Output 1 1 2 3 6 48 1073741823 题目链接:https://uva.onlin ...

随机推荐

  1. Ubuntu 14.04LTS+Git

    Git是我们常用的代码托管工具,作为程序员,Git是必备的. 安装Git的方法很简单,官网就有写:http://git-scm.com/download/linux 根据官网的说明,用: sudo a ...

  2. 牛客网 暑期ACM多校训练营(第一场)J.Different Integers-区间两侧不同数字的个数-离线树状数组 or 可持久化线段树(主席树)

    J.Different Integers 题意就是给你l,r,问你在区间两侧的[1,l]和[r,n]中,不同数的个数. 两种思路: 1.将数组长度扩大两倍,for(int i=n+1;i<=2* ...

  3. (4)C#工具箱-菜单和工具栏

    1.ContextMenuStrip(右键菜单栏) 把contextMenuStrip控件拖到窗体上,会在窗体下面显示,点击控件在最上行显示菜单栏,可以任意设置.(运行以后不会在界面上显示,它需要预控 ...

  4. java Iterable

    Iterable

  5. ubuntu配置无密码登录

    1 本地生成ssh公钥和私钥, 2将公钥拷贝到ubuntu上的.ssh/authorized_keys 中

  6. sqlserver中常用的四个选项(NOCOUNT/ANSI_NULLS/QUOTED_IDENTIFIER/ XACT_ABORT)

    1 NOCOUNT选项 当 SET NOCOUNT 为 ON 时,不返回计数.当 SET NOCOUNT 为 OFF 时,返回计数. eg: if object_id(N'table_test',N' ...

  7. 如何设计好的RESTful API 之好的RESTful API 特征

    原文地址:http://blog.csdn.net/ywk253100/article/details/25654021 导读:设计好RESTful API对于软件架构的可扩展性.可伸缩性和消费者的体 ...

  8. oracle分页sql模板

    select t2.* from (select t1.*,rownum rn from (select * from mytest) t1 where rownum<=860010) t2 w ...

  9. elasticsearch 安装和部署

    jdk要用1.8以上(elasticsearch版本是1.7.3) 下载elasticsearch的tar包,解压开,更改其名称  mv elasticsearch-5.x.x elasticsear ...

  10. 剑指offer——链表相关问题总结

    首先统一链表的数据结构为: struct ListNode { int val; struct ListNode *next; ListNode(int x) :val(x), next(NULL) ...