题意:平面上n个点(坐标$0\le x,y\le 5000,n \le 3000$)

   求以其中四个点为顶点的正方形的最大面积

$O(n^2)$枚举两个点作为当前正方形的对角线

那么如何求出另外两个点呢?

设一个点为$(ax,ay)$,另一个为$(bx,by)$

所求点$(cx,cy),(dx,dy)$

考虑正方形中点$(\frac{ax+bx}{2},\frac{ay+by}{2})$

可以求出左边的向量为$(\frac{bx-ax}{2},\frac{by-ay}{2})$

右边的向量等于左边的向量旋转(自己举例推)$(\frac{by-ay}{2},\frac{ax-bx}{2})$

于是,右下角的点的坐标等于中点加右边的向量

   左上角点的坐标等于中点减右边的向量

如果那两个点是小数,是不成立的

怎么判断呢?

可以发现,那两个点的结果是由ax,ay,bx,by通过加加减减之后除以二得到的,

也就是说ax,ay,bx,by通过加加减减得到的应该是偶数

因此ax,ay,bx,by中必须要有偶数个奇数才成立!

#include<cstdio>
#include<iostream>
#include<cstring>
#include<cctype>
#include<algorithm>
using namespace std;
#define olinr return
#define _ 0
#define love_nmr 0
#define DB double
inline int read()
{
int x=,f=;
char ch=getchar();
while(!isdigit(ch))
{
if(ch=='-')
f=-f;
ch=getchar();
}
while(isdigit(ch))
{
x=(x<<)+(x<<)+(ch^);
ch=getchar();
}
return x*f;
}
inline void put(int x)
{
if(x<)
{
x=-x;
putchar('-');
}
if(x>)
put(x/);
putchar(x%+'');
}
int n;
struct node
{
int x;
int y;
}E[];
bool vis[][];
int ans;
double eps=1e-;
inline int ok(int i,int j)
{
int ax=E[i].x;
int ay=E[i].y;
int bx=E[j].x;
int by=E[j].y;
if((ax^ay^bx^by)&) return -; //判断是否有奇数个奇数
int cx=(ax+bx+by-ay)>>; //四个点的坐标
int cy=(ay+by+ax-bx)>>;
int dx=(ax+bx-by+ay)>>;
int dy=(ay+by-ax+bx)>>;
if(cx<||cy<||dx<||dy<||cx>||cy>||dx>||dy>||!vis[cx][cy]||!vis[dx][dy]) return -; //没超范围并且点存在
int fx=cx-ax;
int fy=cy-ay;
return fx*fx+fy*fy; //面积
}
int main()
{
n=read();
for(int i=;i<=n;i++)
{
E[i].x=read();
E[i].y=read();
vis[E[i].x][E[i].y]=true;
}
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
{
if(i==j) continue;
ans=max(ans,ok(i,j));
}
put(ans);
olinr ~~(^_^)+love_nmr;
}

P1959 遗址_NOI导刊2009普及(6)的更多相关文章

  1. 几何+暴力【p1959】 遗址[NOI导刊2009普及(6)]

    题目描述--> P1959 遗址_NOI导刊2009普及(6) 普通方法分析: 因为题目要求是找最大正方形(如果是长方形更麻烦. 讲真,题目不难,耗时间! 根据题目要求,我们要找的是正方形. 我 ...

  2. 洛谷——P1958 上学路线_NOI导刊2009普及(6)

    P1958 上学路线_NOI导刊2009普及(6) 题目描述 你所在城市的街道好像一个棋盘,有a条南北方向的街道和b条东西方向的街道.南北方向的a条街道从西到东依次编号为l到a,而东西方向的b条街道从 ...

  3. Luogu [P1958] 上学路线_NOI导刊2009普及(6)

    上学路线_NOI导刊2009普及(6) 题目详见:上学路线_NOI导刊2009普及(6) 这是一道基础的DFS(深搜)题,堪称模板,是新手练习搜索与回溯的好题选. 大致思路:从(1,1)开始搜索,每次 ...

  4. 洛谷 P1767 家族_NOI导刊2010普及(10)

    题目描述 在一个与世隔绝的岛屿上,有一个有趣的现象:同一个家族的人家总是相邻的(这里的相邻是指东南西北四个方向),不同的家族之间总会有河流或是山丘隔绝,但同一个家族的人不一定有相同姓氏.现在给你岛上的 ...

  5. 洛谷——P1767 家族_NOI导刊2010普及(10)

    P1767 家族_NOI导刊2010普及(10) 题目描述 在一个与世隔绝的岛屿上,有一个有趣的现象:同一个家族的人家总是相邻的(这里的相邻是指东南西北四个方向),不同的家族之间总会有河流或是山丘隔绝 ...

  6. 洛谷 P1765 手机_NOI导刊2010普及(10)

    题目描述 一般的手机的键盘是这样的: 1 2 abc 3 def 4 ghi 5 jkl 6 mno 7 pqrs 8 tuv 9 wxyz * 0 # 要按出英文字母就必须要按数字键多下.例如要按出 ...

  7. P1765 手机_NOI导刊2010普及(10)

    P1765 手机_NOI导刊2010普及(10) 题目描述 一般的手机的键盘是这样的: 1 2 abc 3 def 4 ghi 5 jkl 6 mno 7 pqrs 8 tuv 9 wxyz * 0 ...

  8. 洛谷 P1952 火星上的加法运算_NOI导刊2009提高(3)

    P1952 火星上的加法运算_NOI导刊2009提高(3) 题目描述 最近欢欢看到一本有关火星的书籍,其中她被一个加法运算所困惑,由于她的运算水平有限.她想向你求助,作为一位优秀的程序员,你当然不会拒 ...

  9. 洛谷—— P1765 手机_NOI导刊2010普及(10)

    https://www.luogu.org/problem/show?pid=1765#sub 题目描述 一般的手机的键盘是这样的: 1 2 abc 3 def 4 ghi 5 jkl 6 mno 7 ...

随机推荐

  1. Shell脚本把文件从GBK转为UTF-8编码

    http://www.jb51.net/article/51308.htm 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 ...

  2. mycat 分片

    1  配置下面两种ER分片,并结合日志分析子表插入过程中的不同 (1).父表按照主键ID分片,子表的分片字段与主表ID关联,配置为ER分片 (2).父表的分片字段为其他字段,子表的分片字段与主表ID关 ...

  3. Spring学习八

    1: Tomcat容器四个等级? Container, Engine,  Servlet容器, Context 真正管理Servlet的容器是Context容器:一个context对应一个web工程. ...

  4. HTML5的离线应用

    参考:有趣的HTML5:离线存储——segmentfault HTML5的离线存储 简介 HTML5提供了很多新的功能以及相应的接口,离线存储就是其中的一个.通过浏览器访问Web App需要联网发送请 ...

  5. 重新认识synchronized(下)

    synchronized既保证原子性,又保证内存可见性,是一种线程同步的方式,是锁机制的一种java实现.synchronized的实现基于JVM底层,JVM是基于monitor实现的,而monito ...

  6. Eclipse中classpath和deploy assembly的文件位置

    classpath的配置信息存储在工程根目录下的.classpath文件 deploy assembly配置信息存储在工程目录下的.settings\org.eclipse.wst.common.co ...

  7. LNMP 1.3 测试php解析

    测试解析LNMP的php解析 先打开nginx的配置文件 vim /usr/local/nginx/conf/nginx.conf location ~ \.php$ { root html; fas ...

  8. MXF文件结构浅析

    MXF是英文Material eXchange Format(素材交换格式)的缩语.MXF是SMPTE(美国电影与电视工程师学会)组织定义的一种专业音视频媒体文件格式.MXF主要应用于影视行业媒体制作 ...

  9. iter创建一个可以被迭代的对象

    #!/usr/bin/env python obj = iter([11,22,33,44]) #iter 创建一个可以被迭代的对象 print(obj) r1 = next(obj) print(r ...

  10. LINUX oracle dbca无法启动

    LINUX操作系统中执行DBCA无法启动 方法:执行以下命令后再执行DBCA xhost +