1 去除多余模块的

#-*- coding:utf-8 -*-

'''
Lucas-Kanade tracker
==================== Lucas-Kanade sparse optical flow demo. Uses goodFeaturesToTrack
for track initialization and back-tracking for match verification
between frames. Lucas Kanade稀疏光流Demo。使用goodfeaturestotrack
用于轨迹初始化和跟踪跟踪的匹配验证
帧间。 Usage
-----
lk_track.py [<video_source>] Keys
----
ESC - exit
''' # Python 2/3 compatibility import numpy as np
import cv2 lk_params = dict( winSize = (15, 15),
maxLevel = 3,
criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03)) feature_params = dict( maxCorners = 800,
qualityLevel = 0.3,
minDistance = 7,
blockSize = 7 ) class App:
def __init__(self, video_src):
self.track_len = 10 #跟踪轨迹长度10
self.detect_interval = 5
self.tracks = [] #储存跟踪点
self.cam = cv2.VideoCapture(video_src)
self.frame_idx = 0 def run(self):
while True:
ret, frame = self.cam.read()
frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
vis = frame.copy() if len(self.tracks) > 0:
img0, img1 = self.prev_gray, frame_gray
p0 = np.float32([tr[-1] for tr in self.tracks]).reshape(-1, 1, 2)
p1, st, err = cv2.calcOpticalFlowPyrLK(img0, img1, p0, None, **lk_params)
p0r, st, err = cv2.calcOpticalFlowPyrLK(img1, img0, p1, None, **lk_params)
d = abs(p0-p0r).reshape(-1, 2).max(-1)
good = d < 1
new_tracks = []
for tr, (x, y), good_flag in zip(self.tracks, p1.reshape(-1, 2), good):
if not good_flag:
continue
tr.append((x, y))
if len(tr) > self.track_len:
del tr[0]
new_tracks.append(tr)
cv2.circle(vis, (x, y), 2, (0, 255, 0), -1)
self.tracks = new_tracks
cv2.polylines(vis, [np.int32(tr) for tr in self.tracks], False, (0, 255, 0))
# draw_str(vis, (20, 20), 'track count: %d' % len(self.tracks)) if self.frame_idx % self.detect_interval == 0:
mask = np.zeros_like(frame_gray)
mask[:] = 255
for x, y in [np.int32(tr[-1]) for tr in self.tracks]:
cv2.circle(mask, (x, y), 5, 0, -1)
p = cv2.goodFeaturesToTrack(frame_gray, mask = mask, **feature_params)
if p is not None:
for x, y in np.float32(p).reshape(-1, 2):
self.tracks.append([(x, y)]) self.frame_idx += 1
self.prev_gray = frame_gray
cv2.imshow('lk_track', vis) ch = cv2.waitKey(1)
if ch == 27:
break def main():
video_src = 'traffic.flv'
App(video_src).run()
cv2.destroyAllWindows() if __name__ == '__main__':
main()

2。还原成普通函数

#-*- coding:utf-8 -*-
import numpy as np
import cv2 #ShiTomasi 角检测的参数
lk_params = dict( winSize = (15, 15),
maxLevel = 3,
criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03)) # l-k 光流参数
feature_params = dict( maxCorners = 800,
qualityLevel = 0.3,
minDistance = 7,
blockSize = 7 ) track_len = 10 # 跟踪轨迹长度10
detect_interval = 5
tracks = [] # 储存跟踪点
frame_idx = 0 # 1,定义一个对象,存储读取的视频
video_src = 'traffic.flv'
cam = cv2.VideoCapture(video_src) while True:
ret, frame = cam.read()
frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
vis = frame.copy() if len(tracks) > 0:
img0, img1 = prev_gray, frame_gray
p0 = np.float32([tr[-1] for tr in tracks]).reshape(-1, 1, 2)
p1, st, err = cv2.calcOpticalFlowPyrLK(img0, img1, p0, None, **lk_params)
p0r, st, err = cv2.calcOpticalFlowPyrLK(img1, img0, p1, None, **lk_params)
d = abs(p0 - p0r).reshape(-1, 2).max(-1)
good = d < 1
new_tracks = []
for tr, (x, y), good_flag in zip(tracks, p1.reshape(-1, 2), good):
if not good_flag:
continue
tr.append((x, y))
if len(tr) > track_len:
del tr[0]
new_tracks.append(tr)
cv2.circle(vis, (x, y), 2, (0, 255, 0), -1)
tracks = new_tracks
cv2.polylines(vis, [np.int32(tr) for tr in tracks], False, (0, 255, 0))
# draw_str(vis, (20, 20), 'track count: %d' % len(self.tracks)) if frame_idx % detect_interval == 0:
mask = np.zeros_like(frame_gray)
mask[:] = 255
for x, y in [np.int32(tr[-1]) for tr in tracks]:
cv2.circle(mask, (x, y), 5, 0, -1)
p = cv2.goodFeaturesToTrack(frame_gray, mask=mask, **feature_params)
if p is not None:
for x, y in np.float32(p).reshape(-1, 2):
tracks.append([(x, y)]) frame_idx += 1
prev_gray = frame_gray
cv2.imshow('lk_track', vis) ch = cv2.waitKey(1)
if ch == 27:
break cv2.destroyAllWindows()
cam.release()

3。效果图

4

5.

12 KLT算法的更多相关文章

  1. 【Java】 大话数据结构(12) 查找算法(3) (平衡二叉树(AVL树))

    本文根据<大话数据结构>一书及网络资料,实现了Java版的平衡二叉树(AVL树). 平衡二叉树介绍 在上篇博客中所实现的二叉排序树(二叉搜索树),其查找性能取决于二叉排序树的形状,当二叉排 ...

  2. 多线程高并发编程(12) -- 阻塞算法实现ArrayBlockingQueue源码分析(1)

    一.前言 前文探究了非阻塞算法的实现ConcurrentLinkedQueue安全队列,也说明了阻塞算法实现的两种方式,使用一把锁(出队和入队同一把锁ArrayBlockingQueue)和两把锁(出 ...

  3. 几个简单易懂的排序算法php

    几个简单易懂的排序算法.排序算法,在应用到解决实际问题的时候(由于不一定总是数字排序),重点要分析出什么时候该交换位置. <?php // 冒泡排序 function bubble_sort(a ...

  4. 【Java】 大话数据结构(11) 查找算法(2)(二叉排序树/二叉搜索树)

    本文根据<大话数据结构>一书,实现了Java版的二叉排序树/二叉搜索树. 二叉排序树介绍 在上篇博客中,顺序表的插入和删除效率还可以,但查找效率很低:而有序线性表中,可以使用折半.插值.斐 ...

  5. 1月21日 Reference Data Type 数据类型,算法基础说明,二分搜索算法。(课程内容)

    Reference Datat Types 引用参考数据类型 -> 组合数据类型 Array, Hash和程序员自定义的复合资料类型 组合数据的修改: 组合数据类型的变量,不是直接存值,而是存一 ...

  6. FIFO调度算法和LRU算法

    一.理论 FIFO:先进先出调度算法 LRU:最近最久未使用调度算法 两者都是缓存调度算法,经常用作内存的页面置换算法. 打一个比方,帮助你理解.你有很多的书,比如说10000本.由于你的书实在太多了 ...

  7. PHP树生成迷宫及A*自己主动寻路算法

    PHP树生成迷宫及A*自己主动寻路算法 迷宫算法是採用树的深度遍历原理.这样生成的迷宫相当的细,并且死胡同数量相对较少! 随意两点之间都存在唯一的一条通路. 至于A*寻路算法是最大众化的一全自己主动寻 ...

  8. CDO如何盘点算法、推动算法业务增长

    在数字经济时代,算法对企业业务增长至关重要,是企业进行数字化转型.构建竞争优势的关键.IT工程师或数据分析师可能会将算法描述为一组由数据操作形成的规则.而从业务价值方面考虑,算法是一种捕获商业机会.提 ...

  9. 目标跟踪之klt---光流跟踪法

    近来在研究跟踪,跟踪的方法其实有很多,如粒子滤波(pf).meanshift跟踪,以及KLT跟踪或叫Lucas光流法,这些方法各自有各自的有点,对于粒子滤波而言,它能够比较好的在全局搜索到最优解,但其 ...

随机推荐

  1. [原创] Debian9上配置Samba

    Samba概述 Samba是一套使用SMB(Server Message Block)协议的应用程序,通过支持这个协议,Samba允许Linux服务器与Windows系统之间进行通信,使跨平台的互访成 ...

  2. constrained属性

    hibernate文档上是这么写的: constrained(约束) (可选) 表明该类对应的表对应的数据库表,和被关联的对象所对应的数据库表之间,通过一个外键引用对主键进行约束.这个选项影响save ...

  3. 使用 Satis 搭建私有的 Composer 包仓库

    简述 iBrand 产品立项时是商业性质的项目,但是在搭建架构时考虑后续的通用性,因此每个模块都设计成一个 Package,作为公司内部用,因此这些包并不能提交到 packagist.org 上去. ...

  4. C#中生成随机数的几种方法

    Random 类 Random类默认的无参构造函数可以根据当前系统时钟为种子,进行一系列算法得出要求范围内的伪随机数 Random rd = new Random() rd.next(,)(生成1~1 ...

  5. 如何让.NET Core应用的配置与源文件保持同步?

    配置的同步涉及到两个方面:第一,对原始的配置文件实施监控并在其发生变化之后从新加载配置;第二,配置重新加载之后及时通知应用程序进而使后者能够使用最新的配置.接下来我们利用一个简单的.NET Core控 ...

  6. 笨办法学Python(七)

    习题 7: 更多打印 现在我们将做一批练习,在练习的过程中你需要键入代码,并且让它们运行起来.我不会解释太多,因为这节的内容都是以前熟悉过的.这节练习的目的是巩固你学到的东西.我们几个练习后再见.不要 ...

  7. 在ABAP里取得一个数据库表记录数的两种方法

    方法1:使用函数EM_GET_NUMBER_OF_ENTRIES 这个函数使用起来很简单,只需要将想查询的数据库表名称维护进输入参数IT_TABLES: 上图说明这个函数支持批量操作,我查询的两张表名 ...

  8. *5. Longest Palindromic Substring (dp) previous blogs are helpful

    Given a string s, find the longest palindromic substring in s. You may assume that the maximum lengt ...

  9. cesium 显示视角高度以及鼠标经纬度

    HTML中的内容 <div id="cesiumContainer"> <!-- 设置经纬度显示 --> <span style="font ...

  10. app接口测试总结

    前段时间在测试一个项目,任务是测试app的API.总结下遇到的问题类型: 1 通过app提交数据,隐形数据有误.(主要通过验证数据库) 比如用户通过app输入工单提交.接口数据中,用户输入的信息都正确 ...