1 引入

为什么会存在临界区这中机制呢?是为多线程同时访问全局变量而引入的。也就是上一篇帖子的末尾流出的问题程序的解决办法。

看懂了上面的,那么我们再罗嗦总结一下:

1.多线程访问全局变量时,存在线程安全问题。

2.局部变量不存在线程安全问题。

2 临界区的使用

2.1 创建CRITICAL_SECTION:

CRITICAL_SECTION cs;

2.2 在使用前进行初始化

InitializeCriticalSection(&cs);

2.3 在函数中使用

DWORD WINAPI 线程A(PVOID pvParam)
{
EnterCriticalSection(&cs); //对全局遍历X的操作 LeaveCriticalSection(&cs);
return(0);
} DWORD WINAPI 线程B(PVOID pvParam)
{
EnterCriticalSection(&g_cs); //对全局遍历X的操作 LeaveCriticalSection(&g_cs);
return(0);
}

2.4 删除CRITICAL_SECTION

VOID DeleteCriticalSection(PCRITICAL_SECTION pcs);//当线程不再试图访问共享资源时

3 CRITICAL_SECTION

3.1 结构

typedef struct _RTL_CRITICAL_SECTION {
PRTL_CRITICAL_SECTION_DEBUG DebugInfo;
LONG LockCount;
LONG RecursionCount;
HANDLE OwningThread;
HANDLE LockSemaphore;
DWORD SpinCount;
} RTL_CRITICAL_SECTION, *PRTL_CRITICAL_SECTION;

LockCount:

它被初始化为数值 -1

此数值等于或大于 0 时,表示此临界区被占用

等待获得临界区的线程数:LockCount - (RecursionCount -1)

RecursionCount:

此字段包含所有者线程已经获得该临界区的次数

OwningThread:

此字段包含当前占用此临界区的线程的线程标识符

此线程 ID 与GetCurrentThreadId 所返回的 ID 相同

3.2 测试代码

#include "stdafx.h"
#include <windows.h>
CRITICAL_SECTION cs; DWORD WINAPI ThreadProc1(LPVOID lpParameter)
{
for(int x=0;x<1000;x++)
{
EnterCriticalSection(&cs); Sleep(1000); printf("11111:%x %x %x\n",cs.LockCount,cs.RecursionCount,cs.OwningThread); LeaveCriticalSection(&cs); }
return 0;
} DWORD WINAPI ThreadProc2(LPVOID lpParameter)
{
for(int x=0;x<1000;x++)
{
EnterCriticalSection(&cs); Sleep(1000); printf("22222:%x %x %x\n",cs.LockCount,cs.RecursionCount,cs.OwningThread); LeaveCriticalSection(&cs); } return 0;
} DWORD WINAPI ThreadProc3(LPVOID lpParameter)
{
for(int x=0;x<1000;x++)
{
EnterCriticalSection(&cs); Sleep(1000); printf("33333:%x %x %x\n",cs.LockCount,cs.RecursionCount,cs.OwningThread); LeaveCriticalSection(&cs); } return 0;
} DWORD WINAPI ThreadProc4(LPVOID lpParameter)
{
for(int x=0;x<1000;x++)
{
EnterCriticalSection(&cs); Sleep(1000); printf("44444:%x %x %x\n",cs.LockCount,cs.RecursionCount,cs.OwningThread); LeaveCriticalSection(&cs); } return 0;
} int main(int argc, char* argv[])
{
InitializeCriticalSection(&cs); //printf("主线程:%x %x %x\n",cs.LockCount,cs.RecursionCount,cs.OwningThread); //创建一个新的线程
HANDLE hThread1 = ::CreateThread(NULL, 0, ThreadProc1,
NULL, 0, NULL); //创建一个新的线程
HANDLE hThread2 = ::CreateThread(NULL, 0, ThreadProc2,
NULL, 0, NULL); //创建一个新的线程
HANDLE hThread3 = ::CreateThread(NULL, 0, ThreadProc3,
NULL, 0, NULL); //创建一个新的线程
HANDLE hThread4 = ::CreateThread(NULL, 0, ThreadProc4,
NULL, 0, NULL); //如果不在其他的地方引用它 关闭句柄
::CloseHandle(hThread1);
::CloseHandle(hThread2);
::CloseHandle(hThread3);
::CloseHandle(hThread4); Sleep(1000*60*60); return 0;
}

4 使用时容易出错和造成程序不稳定的地方

4.1 怎样使用是合理的

场景1:

//1. 错误
DWORD WINAPI 线程A(PVOID pvParam)
{
EnterCriticalSection(&cs);
while(g_nIndex < MAX_TIMES)
{
//对全局遍历X的操作
}
LeaveCriticalSection(&cs);
return(0);
} DWORD WINAPI 线程B(PVOID pvParam)
{
EnterCriticalSection(&cs);
while(g_nIndex < MAX_TIMES)
{
//对全局遍历X的操作
}
LeaveCriticalSection(&cs);
return(0);
} //2. 正确
DWORD WINAPI 线程A(PVOID pvParam)
{ while(g_nIndex < MAX_TIMES)
{
EnterCriticalSection(&cs);
//对全局遍历X的操作
LeaveCriticalSection(&cs);
} return(0); DWORD WINAPI 线程B(PVOID pvParam)
{ while(g_nIndex < MAX_TIMES)
{
EnterCriticalSection(&cs);
//对全局遍历X的操作
LeaveCriticalSection(&cs);
} return(0);
}

场景2:

//1. 错误
DWORD WINAPI 线程A(PVOID pvParam)
{
EnterCriticalSection(&cs);
//代码xxxxxx
//代码xxxxxx //对全局遍历X的操作 //代码xxxxxx
//代码xxxxxx
LeaveCriticalSection(&cs);
} DWORD WINAPI 线程B(PVOID pvParam)
{
EnterCriticalSection(&cs);
//代码xxxxxx
//代码xxxxxx //对全局遍历X的操作 //代码xxxxxx
//代码xxxxxx
LeaveCriticalSection(&cs);
} //2. 正确
DWORD WINAPI 线程A(PVOID pvParam)
{
//代码xxxxxx
//代码xxxxxx
EnterCriticalSection(&cs);
//对全局遍历X的操作
LeaveCriticalSection(&cs);
//代码xxxxxx
//代码xxxxxx
} DWORD WINAPI 线程B(PVOID pvParam)
{
//代码xxxxxx
//代码xxxxxx
EnterCriticalSection(&cs);
//对全局遍历X的操作
LeaveCriticalSection(&cs);
//代码xxxxxx
//代码xxxxxx
}

场景3:

//错误。应该将所有X全局变量放入临界区,否则是没有意义的
DWORD WINAPI 线程A(PVOID pvParam)
{ //代码xxxxxx
//代码xxxxxx
EnterCriticalSection(&cs);
//对全局遍历X的操作
LeaveCriticalSection(&cs);
//代码xxxxxx
//代码xxxxxx } DWORD WINAPI 线程B(PVOID pvParam)
{ //代码xxxxxx
//代码xxxxxx //对全局遍历X的操作 //代码xxxxxx
//代码xxxxxx
}

4.2 应该有多少个CRITICAL_SECTION

全局变量X
全局变量Y
全局变量Z 线程1
DWORD WINAPI ThreadFunc(PVOID pvParam)
{
EnterCriticalSection(&g_cs);
使用X
使用Y
LeaveCriticalSection(&g_cs);
return(0);
} 线程2
DWORD WINAPI ThreadFunc(PVOID pvParam)
{
EnterCriticalSection(&g_cs);
使用X
使用Z
LeaveCriticalSection(&g_cs);
return(0);
} 线程3
DWORD WINAPI ThreadFunc(PVOID pvParam)
{
EnterCriticalSection(&g_cs);
使用Y
使用X
LeaveCriticalSection(&g_cs);
return(0);
}

解决方案:

CRITICAL_SECTION g_csX;
CRITICAL_SECTION g_csY;
CRITICAL_SECTION g_csZ; 线程1
DWORD WINAPI ThreadFunc(PVOID pvParam)
{
EnterCriticalSection(&g_csX);
使用X
LeaveCriticalSection(&g_csX);
EnterCriticalSection(&g_csY);
使用Y
LeaveCriticalSection(&g_csY); return(0);
} 线程2
DWORD WINAPI ThreadFunc(PVOID pvParam)
{
EnterCriticalSection(&g_csX);
使用X
LeaveCriticalSection(&g_csX);
EnterCriticalSection(&g_csZ);
使用Z
LeaveCriticalSection(&g_csZ); return(0);
} 线程3
DWORD WINAPI ThreadFunc(PVOID pvParam)
{
EnterCriticalSection(&g_csX);
使用X
LeaveCriticalSection(&g_csX);
return(0);
}

零基础逆向工程35_Win32_09_临界区_CRITICAL_SECTION结构的更多相关文章

  1. 零基础逆向工程11_C语言05_结构体

    结构体小结 结构体是按照分配的大小,局部变量会自动数据对齐 1字节对齐,省空间,但cpu查找效率低 4字节对齐,不省空间,但cpu查找效率高 VC6默认的结构对齐大小 项目右键-> settin ...

  2. 零基础逆向工程20_PE结构04_任意节空白区_新增节_扩大节添加代码

    向代码节添加代码实现 作者经过一周不断的失败,再思考以及无数次调试终于实现. 思路:八个步骤 1. 文件拷到文件缓冲区(FileBuffer) //图示见(零基础逆向工程18之PE加载过程) 2. 文 ...

  3. 零基础逆向工程36_Win32_10_互斥体_互斥体与临界区的区别

    1 引言 讲了第二个内核对象,互斥体.前面已经学过一个内核对象,线程.这节讲两个函数,WaitForSingleObject()和WaitForMultipleObjects().因此这两个函数是根据 ...

  4. 零基础逆向工程34_Win32_08_线程控制_CONTEXT结构

    线程控制 实验 挂起线程 ::SuspendThread(hThread); 恢复线程 ::ResumeThread(hThread); 终止线程 (这里讲了同步调用与异步调用) 方式一: 此方法结束 ...

  5. 零基础逆向工程22_PE结构06_导入表

    导入表结构 typedef struct _IMAGE_IMPORT_DESCRIPTOR { union { DWORD Characteristics; DWORD OriginalFirstTh ...

  6. 零基础逆向工程23_PE结构07_重定位表_IAT表(待补充)

    重定位表 待补充 IAT表 待补充

  7. 零基础逆向工程21_PE结构05_数据目录表_导出表

    数据目录 1.我们所了解的PE分为头和节,在每个节中,都包含了我们写的一些代码和数据,但还有一些非常重要 的信息是编译器替我们加到PE文件中的,这些信息可能存在在任何可以利用的地方. 2.这些信息之所 ...

  8. 零基础逆向工程19_PE结构03_代码节空白区添加代码_shellcode

    1.获取MessageBox地址,构造ShellCode代码 三种获取方法,参考文章末的一篇帖子. E8 E9计算公式 call 的硬编码:E8 00 00 00 00 jmp 的硬编码:E9 00 ...

  9. 零基础逆向工程18_PE结构02_联合体_节表_PE加载过程

    联合体 特点 1.联合体的成员是共享内存空间的 2.联合体的内存空间大小是联合体成员中对内存空间大小要求最大的空间大小 3.联合体最多只有一个成员有效 节表数据结构说明 PE 加载 过程 FileBu ...

随机推荐

  1. 打表\数学【bzoj2173】: 整数的lqp拆分

    2173: 整数的lqp拆分 Description lqp在为出题而烦恼,他完全没有头绪,好烦啊- 他首先想到了整数拆分.整数拆分是个很有趣的问题.给你一个正整数N,对于N的一个整数拆分就是满足任意 ...

  2. 21.Longest Palindromic Substring(最长回文子串)

    Level:   Medium 题目描述: Given a string s, find the longest palindromic substring in s. You may assume ...

  3. mybatis和返回

    1.查询int 数组 dao类: public List<Integer> queryRoleIdList(Integer userId); service类: List<Integ ...

  4. 利用JPanel和JLabel设置背景图片

    //创建面板1,放置背景图片1 JPanel jPanelTop=new JPanel(); jPanelTop.setBounds(,-,,); //x=0,y=-5用来设置面板距离窗体左上角的距离 ...

  5. 读经典——《CLR via C#》(Jeffrey Richter著) 笔记_运行时解析类型引用

    public sealed class Program{ public static void Main() { System.Console.WriteLine("Hi"); } ...

  6. hdu1016 Prime Ring Problem(DFS)

    Prime Ring Problem Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

  7. 关于Django中路由层(URL-conf)

    关于路由层 路由层其实就是项目中urls.py那个文件,那里面存放着url和视图函数的对应关系它的本质是URL与要为该URL调用的视图函数之间的映射表:你就是以这种方式告诉Django,对于客户端发来 ...

  8. Swagger的坑

    swagger.pathPatterns如果是譬如/w/.*,那么如果API中以w开头的描述就会在swagger-ui中显示不出来

  9. Jenkins安装过程

    1.安装环境 配置java环境 安装Tomcat 2.将Jenkins.war 包放入Tomcat的webapps目录 3.启动tomcat后,tomcat会解压war包,生成一个jenkins文件夹 ...

  10. vuex 浅认知

    什么是Vuex? Vuex 是一个专为 Vue.js 应用程序开发的状态管理模式. 采用了集中式存储管理应用的所有组件的状态,并以相应的规则保证状态以一种可预测的方式发生变化. 什么情况下我应该使用 ...