线段树【SP1043】GSS1 - Can you answer these queries I
Description
给出了序列\(A_1,A_2,…,A_n\)。 \(a_i \leq 15007,1 \leq n \leq 50000\)。查询定义如下: 查询\((x,y)=max{a_i+a{i+1}+...+a_j;x \leq i \leq j \leq y }\)。 给定M个查询,程序必须输出这些查询的结果。
Input
- 输入文件的第一行包含整数\(n\)。
- 在第二行,\(n\)个数字跟随。
- 第三行包含整数\(m\)。
- \(m\)行跟在后面,其中第\(1\)行包含两个数字\(x_i\)和\(y_i\)。
Output
您的程序应该输出\(m\)查询的结果,每一行一个查询。
线段树维护最大子段和裸题.
直接把我的另一篇博客粘过来
数组定义
\(lsum[ ]\)代表 该区间左端点开始的最大连续和.
\(rsum[ ]\)代表 该区间右端点开始的最大连续和.
\(ssum[ ]\)代表 区间内最大连续和.
\(sum[ ]\) 代表区间和.
Que and A
Q:已知一个区间的左右区间的最大连续和,如何合并?
A:这个区间的最大连续和要么是左子区间的最大连续和,要么是右子区间的最大连续和.
要么是左子区间的最大右起子段和+右子区间的最大左起字段和.
code:\(ssum[o]=max(max(ssum[lson],ssum[rson]),rsum[lson]+lsum[rson])\)
Q:如何更新区间最大左起子段和.
A:新区间的最大左起子段和.要么是其左子区间最大连续和,要么是其左子区间和+右子区间的左起子段和.
最大右起子段和同理
code:\(lsum[o]=max(lsum[lson],sum[lson]+lsum[rson])\)
\(rsum[o]=max(rsum[rson],sum[rson]+rsum[lson])\)
更新操作类似单点修改
代码中是结构体写法.
当两端不在左子节点或者右子节点的话,需要考虑合并的
代码
#include<cstdio>
#include<iostream>
#include<cctype>
#define ls o<<1
#define rs o<<1|1
#define R register
using namespace std;
inline void in(int &x)
{
int f=1;x=0;char s=getchar();
while(!isdigit(s)){if(s=='-')f=-1;s=getchar();}
while(isdigit(s)){x=x*10+s-'0';s=getchar();}
x*=f;
}
struct cod{int l,r,lsum,rsum,sum,ssum;}tr[50008*40];
inline void up(int o)
{
tr[o].sum=tr[ls].sum+tr[rs].sum;
tr[o].ssum=max(max(tr[ls].ssum,tr[rs].ssum),tr[ls].rsum+tr[rs].lsum);
tr[o].lsum=max(tr[ls].lsum,tr[ls].sum+tr[rs].lsum);
tr[o].rsum=max(tr[rs].rsum,tr[ls].rsum+tr[rs].sum);
}
void build(int o,int l,int r)
{
tr[o].l=l;tr[o].r=r;
if(l==r)
{
in(tr[o].sum);
tr[o].lsum=tr[o].rsum=tr[o].ssum=tr[o].sum;
return;
}
int mid=(l+r)>>1;
build(ls,l,mid);
build(rs,mid+1,r);
up(o);
}
cod query(int o,int x,int y)
{
if(tr[o].l>=x and y>=tr[o].r) return tr[o];
int mid=(tr[o].l+tr[o].r)>>1;
if(y<=mid) return query(ls,x,y);
if(x>mid) return query(rs,x,y);
else
{
cod t,t1=query(ls,x,y),t2=query(rs,x,y);
t.lsum=max(t1.lsum,t1.sum+t2.lsum);
t.rsum=max(t2.rsum,t2.sum+t1.rsum);
t.ssum=max(max(t1.ssum,t2.ssum),t1.rsum+t2.lsum);
return t;
}
}
int n,m;
int main()
{
in(n);
build(1,1,n);
in(m);
for(R int l,r;m;m--)
{
in(l),in(r);
if(l>r)swap(l,r);
printf("%d\n",query(1,l,r).ssum);
}
}
线段树【SP1043】GSS1 - Can you answer these queries I的更多相关文章
- 线段树 SP1043 GSS1 - Can you answer these queries I
SP1043 GSS1 - Can you answer these queries I 题目描述 给出了序列A[1],A[2],-,A[N]. (a[i]≤15007,1≤N≤50000).查询定义 ...
- SP1043 GSS1 - Can you answer these queries I 线段树
问题描述 LG-SP1043 题解 GSS 系列第一题. \(q\) 个询问,求 \([x,y]\) 的最大字段和. 线段树,维护 \([x,y]\) 的 \(lmax,rmax,sum,val\) ...
- SP1043 GSS1 - Can you answer these queries I(猫树)
给出了序列A[1],A[2],…,A[N]. (a[i]≤15007,1≤N≤50000).查询定义如下: 查询(x,y)=max{a[i]+a[i+1]+...+a[j]:x≤i≤j≤y}. 给定M ...
- [SP1043] GSS1 - Can you answer these queries I
传送门:>Here< 题意:求区间最大子段和 $N \leq 50000$ 包括多组询问(不需要支持修改) 解题思路 线段树的一道好题 我们可以考虑,如果一组数据全部都是正数,那么问题等同 ...
- 线段树 SP1716 GSS3 - Can you answer these queries III
SP1716 GSS3 - Can you answer these queries III 题意翻译 n 个数,q 次操作 操作0 x y把A_xAx 修改为yy 操作1 l r询问区间[l, r] ...
- 线段树 SP2713 GSS4 - Can you answer these queries IV暨 【洛谷P4145】 上帝造题的七分钟2 / 花神游历各国
SP2713 GSS4 - Can you answer these queries IV 「题意」: n 个数,每个数在\(10^{18}\) 范围内. 现在有「两种」操作 0 x y把区间\([x ...
- SP1043 GSS1 - Can you answer these queries I(线段树,区间最大子段和(静态))
题目描述 给出了序列A[1],A[2],…,A[N]. (a[i]≤15007,1≤N≤50000).查询定义如下: 查询(x,y)=max{a[i]+a[i+1]+...+a[j]:x≤i≤j≤y} ...
- [题解] SPOJ GSS1 - Can you answer these queries I
[题解] SPOJ GSS1 - Can you answer these queries I · 题目大意 要求维护一段长度为 \(n\) 的静态序列的区间最大子段和. 有 \(m\) 次询问,每次 ...
- GSS1 - Can you answer these queries I(线段树)
前言 线段树菜鸡报告,stO ZCDHJ Orz,GSS基本上都切完了. Solution 考虑一下用线段树维护一段区间左边连续的Max,右边的连续Max,中间的连续Max还有总和,发现这些东西可以相 ...
随机推荐
- Nuget.config格式错误,请检查nuget.config配置文件
安装 VS 2015 Professional 版,安装后,我想加一个nuget的包配置. 然后提示我:Nuget.config格式错误,请检查nuget.config配置文件 我找到了 Nuget. ...
- tomcat运行solr
https://blog.csdn.net/u010346953/article/details/67640036
- Oz 创建Windows2008R2镜像
此tdl和auto文件只可定义windows disk bus以ide模式启动,不支持virtio. <template> <name>Windows-gushiren< ...
- Python 黑魔法(持续收录)
Python 黑魔法(持续收录) zip 对矩阵进行转置 a = [[1, 2, 3], [4, 5, 6]] print(list(map(list, zip(*a)))) zip 反转字典 a = ...
- leetcode 201. 数字范围按位与 解题报告
给定范围 [m, n],其中 0 <= m <= n <= 2147483647,返回此范围内所有数字的按位与(包含 m, n 两端点). 示例 1: 输入: [5,7] 输出: 4 ...
- Linux网卡驱动程序对ethtool的支持和实现
Linux 的一个显著特点就是其强大的网络功能,Linux 几乎支持所有的网络协议,并在这些协议基础上提供了丰富的应用.对 Linux 网络管理的重要性不言而喻,这些管理依赖于网络工具,比如最常用的 ...
- HDU 4699 Editor(双向链表)
双向链表直接模拟. 用一个辅助数组maxSum来维护一下前k项中[1,k]的最大和. 因为光标是一格一格的移动,所以每次光标右移的时候动态更新一下即可. 时间复杂度O(n). #include < ...
- sharePreference的几个重点
一. SharePreferences是用来存储一些简单配置信息的一种机制,使用Map数据结构来存储数据,以键值对的方式存储,采用了XML格式将数据存储到设备中,文件存放在/data/data/&l ...
- atan与atan2的区别
相比较ATan,ATan2究竟有什么不同?本篇介绍一下ATan2的用法及使用条件. 对于tan(θ) = y / x: θ = ATan(y / x)求出的θ取值范围是[-PI/2, PI/2]. θ ...
- URAL 1934 spfa算法
D - Black Spot Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Subm ...