hihoCoder #1143 : 骨牌覆盖问题·一 (斐波那契数列)
题意:我们有一个2xN的长条形棋盘,然后用1x2的骨牌去覆盖整个棋盘。对于这个棋盘,一共有多少种不同的覆盖方法呢?
思路:这是斐波那契数列啊,f[n] = f[n-1] + f[n-2],初始时 f[0]=1,f[1]=1,f[2]=2。其实跟下面的递推思路差不多吧。但是关于这种简单,一般都可以用矩阵快速幂解决,即O(logn)时间内解决。主要难点是构造初始矩阵,如果是后面一个数字是由卡面两个数字相加而成的,那么一般可构造一个2*2的01矩阵,才这么小,随便试试吧,只要乘完的结果第二位是答案即可。
#include <iostream>
using namespace std;
const int yu = ;
const int MASK = ;
struct fuf
{
long long a,b, //矩阵如左
c,d;
}q[]; int handle_it()
{
q[].a=; q[].b=; q[].c=; q[].d=; //矩阵M的1次方
int i=;
for(; i<=; i++) //作乘
{
q[i].a = ( q[i-].a * q[i-].a + q[i-].b * q[i-].c )%yu;
q[i].b = ( q[i-].a * q[i-].b + q[i-].b * q[i-].d )%yu;
q[i].c = ( q[i-].c * q[i-].a + q[i-].d * q[i-].c )%yu;
q[i].d = ( q[i-].c * q[i-].b + q[i-].d * q[i-].d )%yu;
}
return ;
}
int main()
{
handle_it();
int n;
while( cin>>n )
{
if( n> && n<=) {cout<<n<<endl;continue;}
int i=;
while( (n&MASK)== ) //直到n后面的0被去掉
{
i++;
n >>= ;
}
fuf ans = q[i++];
n >>= ;
for( ; i< && n!=; i++,n >>= )
{
if( (n&)== )
{
fuf tmp;
tmp.a = ( ans.a * q[i].a + ans.b * q[i].c )%yu;
tmp.b = ( ans.a * q[i].b + ans.b * q[i].d )%yu;
tmp.c = ( ans.c * q[i].a + ans.d * q[i].c )%yu;
tmp.d = ( ans.c * q[i].b + ans.d * q[i].d )%yu;
ans = tmp;
}
}
cout<<ans.d<<endl;
}
return ;
}
骨牌
写了个递推的思路:
(1)设dp[i]表示2*(i-1)的棋盘的摆放种数。
(2)假设第i列是放一个竖的,那么dp[i+1]+=dp[i]。这样只是一种,所以只是单纯用加的方式。
(3)假设第i列是放横的,那么连同第i+1列都被占用了,所以第i和i+1列就被摆放了两个横的,那么dp[i+2]+=dp[i]。这又是一种。
(4)2*n的棋盘答案就自然是dp[n+1]了,表示前n列的摆放种数。
#include <bits/stdc++.h>
#define pii pair<int,int>
#define INF 0x3f3f3f3f
#define LL long long
using namespace std;
const int N=1e8+;
const int mod=;
int dp[N], ans[N];
void pre_cal()
{
dp[]=;
for(int i=; i<N; i++)
{
dp[i+]=(dp[i+]+dp[i])%mod; //考虑放横
dp[i+]=(dp[i+]+dp[i])%mod; //考虑放直
ans[i]=(dp[i]+dp[i-])%mod;
}
} int main()
{
freopen("input.txt", "r", stdin);
pre_cal();
int n;
while(~scanf("%d",&n)) printf("%d\n",ans[n]);
return ;
}
TLE代码
hihoCoder #1143 : 骨牌覆盖问题·一 (斐波那契数列)的更多相关文章
- hihoCoder 1143 : 骨牌覆盖问题·一(递推,矩阵快速幂)
[题目链接]:click here~~ 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 骨牌,一种古老的玩具.今天我们要研究的是骨牌的覆盖问题: 我们有一个2xN的长条形 ...
- C#版 - 剑指offer 面试题9:斐波那契数列及其变形(跳台阶、矩形覆盖) 题解
面试题9:斐波那契数列及其变形(跳台阶.矩形覆盖) 提交网址: http://www.nowcoder.com/practice/c6c7742f5ba7442aada113136ddea0c3?tp ...
- 7、斐波那契数列、跳台阶、变态跳台阶、矩形覆盖------------>剑指offer系列
题目:斐波那契数列 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0). f(n) = f(n-1) + f(n-2) 基本思路 这道题在剑指offe ...
- 斐波那契数列F(n)【n超大时的(矩阵加速运算) 模板】
hihocoder #1143 : 骨牌覆盖问题·一 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 骨牌,一种古老的玩具.今天我们要研究的是骨牌的覆盖问题: 我们有一个 ...
- 斐波那契数列 51nod
1242 斐波那契数列的第N项 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 斐波那契数列的定义如下: F(0) = 0 F(1) = 1 F(n) ...
- 剑指offer-第二章算法之斐波拉契数列(青蛙跳台阶)
递归与循环 递归:在一个函数的内部调用这个函数. 本质:把一个问题分解为两个,或者多个小问题(多个小问题相互重叠的部分,会存在重复的计算) 优点:简洁,易于实现. 缺点:时间和空间消耗严重,如果递归调 ...
- javascript . 03 函数定义、函数参数(形参、实参)、函数的返回值、冒泡函数、函数的加载、局部变量与全局变量、隐式全局变量、JS预解析、是否是质数、斐波那契数列
1.1 知识点 函数:就是可以重复执行的代码块 2. 组成:参数,功能,返回值 为什么要用函数,因为一部分代码使用次数会很多,所以封装起来, 需要的时候调用 函数不调用,自己不会执行 同名函数会覆盖 ...
- 【斐波那契数列】java探究
题目描述 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0). n<=39 解析 (1)递归方式 对于公式f(n) = f(n-1) + f(n ...
- 《剑指offer》斐波那契数列
本题来自<剑指offer> 斐波那契数列 矩阵覆盖 题目一: 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0).n<=39 思路: ...
随机推荐
- C#String.Split (string[], StringSplitOptions)中的StringSplitOptions是什么意思,看了msdn还是不懂?
MSDN上面这样子写的: [ComVisibleAttribute(false)] public string[] Split(string[] separator,StringSplitOption ...
- MATLAB解决常微分方程
首先得介绍一下,在matlab中解常微分方程有两种方法,一种是符号解法,另一种是数值解法.在本科阶段的微分数学题,基本上可以通过符号解法解决. 用matlab解决常微分问题的符号解法的关键命令是d ...
- One-Hot独热编码
One-Hot独热编码 Dummy Encoding VS One-Hot Encoding二者都可以对Categorical Variable做处理,定性特征转换为定量特征,转换为定量特征其实就是将 ...
- poj3728(lca / tarjan离线)
题目链接: http://poj.org/problem?id=3728 题意: 给出一棵带点权值的树, 对于 q 组形如 x, y 的询问, 一个人要从 x 到 y(单向), 他可以在路上任意一点以 ...
- poj 1655 Balancing Act(找树的重心)
Balancing Act POJ - 1655 题意:给定一棵树,求树的重心的编号以及重心删除后得到的最大子树的节点个数size,如果size相同就选取编号最小的. /* 找树的重心可以用树形dp或 ...
- Eclipse中Android公共库的正确建立及调用方法(转)
转自http://www.cnblogs.com/SkyD/archive/2011/09/01/2161502.html 引言 之前一直头痛于没有办法在多个程序中共享资源,用作公共类库的方法也是使用 ...
- luoguP4921 情侣?给我烧了!
luogu 考虑对于\(n\)对情侣,恰好\(k\)对是和谐的方案数是 \[ ans[n][k]=\binom{n}{k}A^k_n2^kg(n-k) \] \(g(n)\)为全部\(n\)对情侣不和 ...
- 洛谷P2184 贪婪大陆
题目背景 面对蚂蚁们的疯狂进攻,小FF的\(Tower\) \(defence\)宣告失败--人类被蚂蚁们逼到了\(Greed\) \(Island\)上的一个海湾.现在,小FF的后方是一望无际的大海 ...
- angularjs 使用angular-sortable-view实现拖拽效果(包括拖动完成后的方法使用)
首先还是看效果图吧,方便大家可以快速得知是否是自己需要的功能:(抱歉电脑还未安装动图软件,先用.png) 如果上图是你需要的功能效果图,那么请往下看,我有写出来例子哦~ 使用这个插件有几个好处,首先: ...
- poj 1236 Network of Schools (强连通分量+缩点)
题目大概: 每个学校都可以把软件复制好,交给它名单上的学校. 问题A:把软件复制成几份,然后交给不同的学校,所有学校才能够都有软件. 问题B:添加几条边,能使得这个图变成强连通图. 思路: 找出所有的 ...