题意:我们有一个2xN的长条形棋盘,然后用1x2的骨牌去覆盖整个棋盘。对于这个棋盘,一共有多少种不同的覆盖方法呢?

思路:这是斐波那契数列啊,f[n] = f[n-1] + f[n-2],初始时 f[0]=1,f[1]=1,f[2]=2。其实跟下面的递推思路差不多吧。但是关于这种简单,一般都可以用矩阵快速幂解决,即O(logn)时间内解决。主要难点是构造初始矩阵,如果是后面一个数字是由卡面两个数字相加而成的,那么一般可构造一个2*2的01矩阵,才这么小,随便试试吧,只要乘完的结果第二位是答案即可。

 #include <iostream>
using namespace std;
const int yu = ;
const int MASK = ;
struct fuf
{
long long a,b, //矩阵如左
c,d;
}q[]; int handle_it()
{
q[].a=; q[].b=; q[].c=; q[].d=; //矩阵M的1次方
int i=;
for(; i<=; i++) //作乘
{
q[i].a = ( q[i-].a * q[i-].a + q[i-].b * q[i-].c )%yu;
q[i].b = ( q[i-].a * q[i-].b + q[i-].b * q[i-].d )%yu;
q[i].c = ( q[i-].c * q[i-].a + q[i-].d * q[i-].c )%yu;
q[i].d = ( q[i-].c * q[i-].b + q[i-].d * q[i-].d )%yu;
}
return ;
}
int main()
{
handle_it();
int n;
while( cin>>n )
{
if( n> && n<=) {cout<<n<<endl;continue;}
int i=;
while( (n&MASK)== ) //直到n后面的0被去掉
{
i++;
n >>= ;
}
fuf ans = q[i++];
n >>= ;
for( ; i< && n!=; i++,n >>= )
{
if( (n&)== )
{
fuf tmp;
tmp.a = ( ans.a * q[i].a + ans.b * q[i].c )%yu;
tmp.b = ( ans.a * q[i].b + ans.b * q[i].d )%yu;
tmp.c = ( ans.c * q[i].a + ans.d * q[i].c )%yu;
tmp.d = ( ans.c * q[i].b + ans.d * q[i].d )%yu;
ans = tmp;
}
}
cout<<ans.d<<endl;
}
return ;
}

骨牌

  写了个递推的思路:

  (1)设dp[i]表示2*(i-1)的棋盘的摆放种数。

  (2)假设第i列是放一个竖的,那么dp[i+1]+=dp[i]。这样只是一种,所以只是单纯用加的方式。

  (3)假设第i列是放横的,那么连同第i+1列都被占用了,所以第i和i+1列就被摆放了两个横的,那么dp[i+2]+=dp[i]。这又是一种。

  (4)2*n的棋盘答案就自然是dp[n+1]了,表示前n列的摆放种数。

 #include <bits/stdc++.h>
#define pii pair<int,int>
#define INF 0x3f3f3f3f
#define LL long long
using namespace std;
const int N=1e8+;
const int mod=;
int dp[N], ans[N];
void pre_cal()
{
dp[]=;
for(int i=; i<N; i++)
{
dp[i+]=(dp[i+]+dp[i])%mod; //考虑放横
dp[i+]=(dp[i+]+dp[i])%mod; //考虑放直
ans[i]=(dp[i]+dp[i-])%mod;
}
} int main()
{
freopen("input.txt", "r", stdin);
pre_cal();
int n;
while(~scanf("%d",&n)) printf("%d\n",ans[n]);
return ;
}

TLE代码

hihoCoder #1143 : 骨牌覆盖问题·一 (斐波那契数列)的更多相关文章

  1. hihoCoder 1143 : 骨牌覆盖问题·一(递推,矩阵快速幂)

    [题目链接]:click here~~ 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 骨牌,一种古老的玩具.今天我们要研究的是骨牌的覆盖问题: 我们有一个2xN的长条形 ...

  2. C#版 - 剑指offer 面试题9:斐波那契数列及其变形(跳台阶、矩形覆盖) 题解

    面试题9:斐波那契数列及其变形(跳台阶.矩形覆盖) 提交网址: http://www.nowcoder.com/practice/c6c7742f5ba7442aada113136ddea0c3?tp ...

  3. 7、斐波那契数列、跳台阶、变态跳台阶、矩形覆盖------------>剑指offer系列

    题目:斐波那契数列 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0). f(n) = f(n-1) + f(n-2) 基本思路 这道题在剑指offe ...

  4. 斐波那契数列F(n)【n超大时的(矩阵加速运算) 模板】

    hihocoder #1143 : 骨牌覆盖问题·一 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 骨牌,一种古老的玩具.今天我们要研究的是骨牌的覆盖问题: 我们有一个 ...

  5. 斐波那契数列 51nod

    1242 斐波那契数列的第N项 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 斐波那契数列的定义如下:   F(0) = 0 F(1) = 1 F(n) ...

  6. 剑指offer-第二章算法之斐波拉契数列(青蛙跳台阶)

    递归与循环 递归:在一个函数的内部调用这个函数. 本质:把一个问题分解为两个,或者多个小问题(多个小问题相互重叠的部分,会存在重复的计算) 优点:简洁,易于实现. 缺点:时间和空间消耗严重,如果递归调 ...

  7. javascript . 03 函数定义、函数参数(形参、实参)、函数的返回值、冒泡函数、函数的加载、局部变量与全局变量、隐式全局变量、JS预解析、是否是质数、斐波那契数列

    1.1 知识点 函数:就是可以重复执行的代码块 2.  组成:参数,功能,返回值 为什么要用函数,因为一部分代码使用次数会很多,所以封装起来, 需要的时候调用 函数不调用,自己不会执行 同名函数会覆盖 ...

  8. 【斐波那契数列】java探究

    题目描述 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0). n<=39 解析 (1)递归方式 对于公式f(n) = f(n-1) + f(n ...

  9. 《剑指offer》斐波那契数列

    本题来自<剑指offer> 斐波那契数列 矩阵覆盖 题目一: 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0).n<=39 思路: ...

随机推荐

  1. 对Json的一些理解

    标准json格式:{"name":"王大昭","url":"https://www.cnblogs.com/codezhao/&q ...

  2. zoj3435(莫比乌斯反演)

    题目链接: http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3435 题意: 给出一个三维坐标 (x, y, z), 问该点与 ...

  3. 魔卡少女(cardcaptor)——线段树

    题目 [题目描述] 君君是中山大学的四年级学生.有一天在家不小心开启了放置在爸爸书房中的一本古书.于是,君君把放在书中最上面的一张牌拿出来观摩了一下,突然掀起一阵大风把书中的其她所有牌吹散到各地.这时 ...

  4. 使用shell脚本分析Nagios的status.dat文件

    前言 Nagios的安装和配置以及批量添加监控服务器在我前面的文章中已经讲的很详细了. 我们知道,Nagios的网页控制页面(一般为http://nagio.domain.com/nagios)里可以 ...

  5. JMETER从JSON响应中提取数据

    如果你在这里,可能是因为你需要使用JMeter从Json响应中提取变量. 好消息!您正在掌握掌握JMeter Json Extractor的权威指南.作为Rest API测试指南的补充,您将学习掌握J ...

  6. Jmeter常用线程组设置及场景运行时间计算

    Jmeter中通过线程组来模拟大用户并发场景,今天主要介绍三个常用的线程组,帮助我们设计更加完善的测试场景,另外介绍下场景执行时间如何计算. 一.Thread Group 取样器错误后要执行的动作   ...

  7. array类型的方法

    var arr1 = [12,454,'dafda','feagfag',23]; var arr2 = [46468,'ffwfe','dafs','dfsfs']; arr1.indexOf('d ...

  8. Eclipse(2019-03版本)汉化

    1.Eclipse IDE 版本 eclipse-jee-2019-03-R-win32-x86_64.zip 2.Eclipse 汉化包下载 babel-R0.16.0-photon.zip 3.解 ...

  9. Migration-添加表

    public partial class _111111 : DbMigration { public override void Up() { CreateTable( "dbo.Asse ...

  10. webissue 搭建 issue 分析工具

    http://www.cnblogs.com/feiyun8616/p/6208423.html