BP人工神经网络-反向传播法

0 网络计算结果
B(m)=f( ∑n( W(n,m)*X(n) ) + Θ(m) ) %中间层的输出
Y(k)=f( ∑m( V(m,k)*B(m) ) + ф(k) ) %输出层的输出
1 计算误差值
E(k)=Y'(k)-Y(K) %Y'表示样本真实的输出值
2 计算校正误差
dV(k)=E(K) * Y(k) * ( 1-Y(k) )* [学习率]
dW(m)=∑k( dV(k) * V(m,k) ) * B(m) * ( 1-B(m) ) * [学习率]
3 误差校正
V(m,k)=V(m,k) + dV(k) * B(m)
W(n,m)=W(n,m) + dW(m) * X(n)
ф(k)=ф(k) + dV(k) * [学习率]
Θ(m)=Θ(m) + dW(m)* [学习率]
4 matlab代码
%% 构建人工神经网络
% input_train,网络的输入,1500个样本,每个样本24个因子
% output_train,网络的输出,与输入样本数相同为1500个,每个输出有4个因子 in_num=24;%输入的因子数
mid_num=25;%中间层的个数
out_num=4;%输出的因子数 W1=rands(mid_num,in_num);%每个输入对中间层的权重
TD1=rands(1,mid_num);%中间层的阈值
W2=rands(out_num,mid_num);%中间层对输出的权重
TD2=rands(1,out_num);%输出的阈值 %学习率
xite=0.1;%权重的学习率
alfa=0.01;%阈值的学习率 loop_num=100;%训练迭代的次数 %% 网络训练
for loop=1:loop_num
for index=1:1500
input=input_train(index,:);
% 计算中间层输出
mid_out=input*W1'+TD1;
mid_out=1./(1+exp(-mid_out));
% 计算网络的输出
output=mid_out*W2'+TD2;
output=1./(1+exp(-output));
% 计算权重的下降梯度
E= output_train(index,:) - output;
dW2 = E .* output .* (1 - output) * xite;
dW1 = dW2 * W2 .* mid_out .* (1-mid_out) * xite;
% 更新权重
W2=W2 + diag( dW2) * repmat(mid_out,out_num,1);
W1=W1 + diag(dW1) * repmat(input,mid_num,1);
% 更新阈值
TD2=TD2+dW2*xite;
TD1=TD1+dW1*xite;
end
end
代码与示例数据
http://download.csdn.net/detail/long7782/8112627
BP人工神经网络-反向传播法的更多相关文章
- 人工神经网络反向传播算法(BP算法)证明推导
为了搞明白这个没少在网上搜,但是结果不尽人意,最后找到了一篇很好很详细的证明过程,摘抄整理为 latex 如下. (原文:https://blog.csdn.net/weixin_41718085/a ...
- 神经网络中的反向传播法--bp【转载】
from: 作者:Charlotte77 出处:http://www.cnblogs.com/charlotte77/ 一文弄懂神经网络中的反向传播法——BackPropagation 最近在看深度学 ...
- 一文弄懂神经网络中的反向传播法——BackPropagation
最近在看深度学习的东西,一开始看的吴恩达的UFLDL教程,有中文版就直接看了,后来发现有些地方总是不是很明确,又去看英文版,然后又找了些资料看,才发现,中文版的译者在翻译的时候会对省略的公式推导过程进 ...
- [转] 一文弄懂神经网络中的反向传播法——BackPropagation
在看CNN和RNN的相关算法TF实现,总感觉有些细枝末节理解不到位,浮在表面.那么就一点点扣细节吧. 这个作者讲方向传播也是没谁了,666- 原文地址:https://www.cnblogs.com/ ...
- 一文弄懂神经网络中的反向传播法(Backpropagation algorithm)
最近在看深度学习的东西,一开始看的吴恩达的UFLDL教程,有中文版就直接看了,后来发现有些地方总是不是很明确,又去看英文版,然后又找了些资料看,才发现,中文版的译者在翻译的时候会对省略的公式推导过程进 ...
- 一文弄懂神经网络中的反向传播法——BackPropagation【转】
本文转载自:https://www.cnblogs.com/charlotte77/p/5629865.html 一文弄懂神经网络中的反向传播法——BackPropagation 最近在看深度学习 ...
- 浅层神经网络 反向传播推导:MSE softmax
基础:逻辑回归 Logistic 回归模型的参数估计为什么不能采用最小二乘法? logistic回归模型的参数估计问题不能“方便地”定义“误差”或者“残差”. 对单个样本: 第i层的权重W[i]维度的 ...
- 用BP人工神经网络识别手写数字
http://wenku.baidu.com/link?url=HQ-5tZCXBQ3uwPZQECHkMCtursKIpglboBHq416N-q2WZupkNNH3Gv4vtEHyPULezDb5 ...
- 神经网络反向传播算法&&卷积神经网络
听一遍课程之后,我并不太明白这个算法的奇妙之处?? 为啥? 神经网络反向传播算法 神经网络的训练依靠反向传播算法,最开始输入层输入特征向量,网络层计算获得输出,输出层发现输出和正确的类号不一样,这时就 ...
随机推荐
- android listview addHeaderView和addFooterView的注意事项
1. item内如果有button等控件时,在监听listview的onitemclick事件时,焦点会被item内的button. imagebutton等控件抢走,从而导致在listview设置了 ...
- springcloud安全控制token的创建与解析
import io.jsonwebtoken.Claims; import io.jsonwebtoken.Jwts; import io.jsonwebtoken.SignatureAlgorith ...
- javascript 获取iframe元素的方法
javascript 获取iframe元素的方法 第一种: $("#IframeID").contents().find("div"); 第二种: $(win ...
- mysql服务启动不了解决方法
sudo lsof |grep deleted 找占用大的kill一下, 一般是tomcat log和zookeeper的out比较吃磁盘 du -h --max-depth=1 / 今天作死,想 ...
- UINavigationController + UIScrollView组合,视图尺寸的设置探秘(三)
还是在苹果的 View Controller Catalog for iOS 文章中找到答案.文中提到了两点: 1.If the navigation bar or toolbar are visib ...
- ubuntu - 14.04,安装VirtualBox 5.0(虚拟机软件)!
VirtualBox是一款免费.开源的虚拟机软件,可以运行在多种操作系统上,真的是一款值得我们使用的虚拟机软件! 官方网址:https://www.virtualbox.org/ ubuntu14.0 ...
- localStorage、sessionStorage、cookie的有效期和作用域问题
sessionStorage,localStorage,cookie都可以实现客户端存储,三者的区别有哪些了? cookie作为最早期的被设计web浏览器存储少量数据,从底层看,它是作为http协议的 ...
- oracle 多表连接查询 join(一)
一.简介: 多表连接查询通过表之间的关联字段,一次查询多表数据. 下面将依次介绍 多表连接中的如下方法: 1.from a,b 2.inner join 3.left outer join 4.rig ...
- completer自动完成
由于项目需要,在输入框中要做一些输入限制的同时,更加要求用户体验,提供一些自动完成设置.所以有需求,总会有解决方式,下面说一下自动完成插件的原理: html的body部分: <span styl ...
- springboot mybatis自定义枚举enum转换
原文链接:https://blog.csdn.net/u014527058/article/details/62883573 一.概述 在利用Spring进行Web后台开发时,经常会遇到枚举类型的绑定 ...