bzoj1264 [AHOI2006]基因匹配Match 树状数组+lcs
1264: [AHOI2006]基因匹配Match
Time Limit: 10 Sec Memory Limit: 162 MB
Submit: 1255 Solved: 835
[Submit][Status][Discuss]
Description
卡卡昨天晚上做梦梦见他和可可来到了另外一个星球,这个星球上生物的DNA序列由无数种碱基排列而成(地球上只有4种),而更奇怪的是,组成DNA序列的每一种碱基在该序列中正好出现5次!这样如果一个DNA序列有N种不同的碱基构成,那么它的长度一定是5N。
卡卡醒来后向可可叙述了这个奇怪的梦,而可可这些日子正在研究生物信息学中的基因匹配问题,于是他决定为这个奇怪星球上的生物写一个简单的DNA匹配程序。
为了描述基因匹配的原理,我们需要先定义子序列的概念:若从一个DNA序列(字符串)s中任意抽取一些碱基(字符),将它们仍按在s中的顺序排列成一个新串u,则称u是s的一个子序列。对于两个DNA序列s1和s2,如果存在一个序列u同时成为s1和s2的子序列,则称u是s1和s2的公共子序列。
卡卡已知两个DNA序列s1和s2,求s1和s2的最大匹配就是指s1和s2最长公共子序列的长度。
[任务]
编写一个程序:
从输入文件中读入两个等长的DNA序列;
计算它们的最大匹配;
向输出文件打印你得到的结果。
Input
以下还有两行,每行描述一个DNA序列:包含5N个1…N的整数,且每一个整数在对应的序列中正好出现5次。
Output
Sample Input
1 1 2 2 1 1 2 1 2 2
1 2 2 2 1 1 2 2 1 1
Sample Output
HINT
[数据约束和评分方法]
60%的测试数据中:1<=N <= 1 000
100%的测试数据中:1<=N <= 20 000
Source
给定n个数和两个长度为n*5的序列,每个数恰好出现5次,求两个序列的LCS
n<=20000,序列长度就是10W,朴素的O(n^2)一定会超时
所以我们考虑LCS的一些性质
LCS的决策+1的条件是a[i]==b[j] 于是我们记录a序列中每个数的5个位置
扫一下b[i] 对于每个b[i]找到b[i]在a中的5个位置 这5个位置的每个f[pos]值都可以被b[i]更新 于是找到f[1]到f[pos-1]的最大值+1 更新f[pos]即可
这个用树状数组维护 时间复杂度O(nlogn)
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cstdio> #define M 200007
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if (ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=(x<<)+(x<<)+ch-'';ch=getchar();}
return x*f;
} int n,ans;
int a[M*],b[M*],c[M*],f[M*],pos[M][]; void Update(int x,int y)
{
for(;x<=n*;x+=x&-x)
c[x]=max(c[x],y);
}
int Get_Ans(int x)
{
int re=;
for(;x;x-=x&-x)
re=max(re,c[x]);
return re;
}
int main()
{
n=read();
for(int i=;i<=n*;i++)
{
a[i]=read();
pos[a[i]][++pos[a[i]][]]=i;
}
for(int i=;i<=n*;i++)b[i]=read();
for(int i=;i<=n*;i++)
for(int j=;j;j--)
{
int k=pos[b[i]][j];
f[k]=max(f[k],Get_Ans(k-)+);
Update(k,f[k]);
ans=max(ans,f[k]);
}
printf("%d\n",ans);
}
bzoj1264 [AHOI2006]基因匹配Match 树状数组+lcs的更多相关文章
- BZOJ 1264: [AHOI2006]基因匹配Match 树状数组+DP
1264: [AHOI2006]基因匹配Match Description 基因匹配(match) 卡卡昨天晚上做梦梦见他和可可来到了另外一个星球,这个星球上生物的DNA序列由无数种碱基排列而成(地球 ...
- 【bzoj1264】[AHOI2006]基因匹配Match 树状数组
题解: 一道比较简单的题目 容易发现状态数只有5*n个 而转移需要满足i1<i2;j1<j2 那么很明显是二维平面数点 暴力一点就是二维树状数组+map 5nlog^3 比较卡常 但是注意 ...
- bzoj 1264: [AHOI2006]基因匹配Match (树状数组优化dp)
链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1264 思路: n大小为20000*5,而一般的dp求最长公共子序列复杂度是 n*n的,所以我 ...
- BZOJ_1264_[AHOI2006]基因匹配Match_树状数组
BZOJ_1264_[AHOI2006]基因匹配Match_树状数组 Description 基因匹配(match) 卡卡昨天晚上做梦梦见他和可可来到了另外一个星球,这个星球上生物的DNA序列由无数种 ...
- 洛谷P4303 [AHOI2006]基因匹配(树状数组)
传送门 我已经连这种傻逼题都不会了orz 正常的dp是$O(n^2)$的,枚举第一个数组的$j$,然后第二个数组的$k$,如果相等,则$dp[i]=dp[j]+1$,否则$dp[i]=dp[j]$ 然 ...
- BZOJ1264: [AHOI2006]基因匹配Match
1264: [AHOI2006]基因匹配Match Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 541 Solved: 347[Submit][S ...
- BZOJ1264 [AHOI2006]基因匹配Match 动态规划 树状数组
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1264 题意概括 给出两个长度为5*n的序列,每个序列中,有1~n各5个. 求其最长公共子序列长度. ...
- [BZOJ1264][AHOI2006]基因匹配Match(DP + 树状数组)
传送门 有点类似LCS,可以把 a[i] 在 b 串中的位置用一个链式前向星串起来,由于链式前向星是从后往前遍历,所以可以直接搞. 状态转移方程 f[i] = max(f[j]) + 1 ( 1 &l ...
- BZOJ1264 [AHOI2006]基因匹配Match 【LCS转LIS】
题目链接 BZOJ1264 题解 平凡的\(LCS\)是\(O(n^2)\)的 显然我们要根据题目的性质用一些不平凡的\(LCS\)求法 这就很巧妙了,, 我们考虑\(A\)序列的每个位置可能匹配\( ...
随机推荐
- Linux关闭开启防火墙命令
在外部访问CentOS中部署应用时,需要关闭防火墙. 关闭防火墙命令:systemctl stop firewalld.service 开启防火墙:systemctl start firewalld. ...
- 云计算之KVM虚拟化实战
1 基础环境规划 1.1 主机环境规划 系统版本 主机名 IP地址 内存 磁盘 CentOS6.9 kvm-node1 10.0.0.200 2G 20G CentOS6.9 kvm-node2 10 ...
- hive连接MySQL报错
错误如下: [root@awen01 /usr/local/apache-hive-1.2.1-bin]#./bin/hive Logging initialized using configurat ...
- python——PIL(图像处理库)
PIL(Python Imaging Library,python图像处理库)提供了通用的图像处理功能,以及大量有用的基本图像操作,如图像缩放,裁剪,旋转,颜色转换等. 1.打开图像并显示 from ...
- POJ-2251 三维迷宫
题目大意:给一个三维图,可以前后左右上下6种走法,走一步1分钟,求最少时间(其实就是最短路) 分析:这里与二维迷宫是一样的,只是多了2个方向可走,BFS就行(注意到DFS的话复杂度为O(6^n)肯定会 ...
- Balance POJ - 1837
Description Gigel has a strange "balance" and he wants to poise it. Actually, the device i ...
- contest0 from codechef
A CodeChef - KSPHERES 中文题意 Mandarin Chinese Eugene has a sequence of upper hemispheres and another ...
- Fragment Touch事件泄露
当Fragment的栈里面有几个fragment的时候,这个时候如果是几个fragment状态是hide,当你触摸当前fragment的时候,下层的fragment的事件被触发,这是由于Touch事件 ...
- Java 泛型 二
一. 泛型概念的提出(为什么需要泛型)? 首先,我们看下下面这段简短的代码: 1 public class GenericTest { 2 3 public static void main(Stri ...
- web开发学习之路是否有尽头
Linux/Git/Pip/Npm/Composer Apache/Ngnix Mysql/MongoDb/Redis PHP/Python/NodeJS javascript/jQuery/Expr ...