AGC007 - C Pushing Ball
Description
题目链接 懒得写详细题意了, 放个链接
\(n\le 2*10^5\) 个球, \(n+1\) 个坑, 排成数轴, 球坑交替. 相邻球-坑距离为等差数列 \(d\). 给定首项与公差. 每次随机选一个球并随机往一个方向推, 求期望经过距离总和
Solution
手玩观察一下, 球不可能没坑掉, 每次推完一个球后变成 \(n-1\) 个球的子问题.
对于每一个子问题, 只考虑推第一个球的期望距离 (\(\frac{\sum_{i=1}^{2n}d_i}{2n}\)) , 其他的在子问题中处理.
考虑对于任意一个子问题, 假设有 \(n\) 个球, 则有 \(2n\) 个子状态, 每个子状态的概率 \(\frac 1{2n}\)
子状态中 \(d'\) 可根据当前问题的 \(d\) 经过线性运算得出, 推第一个球的期望距离也可由 \(d\) 线性运算得出.
因此, 我们可以将这 \(2n\) 个子问题合并, 合并的子问题中 \(d''_i = E[d'_i]\). 下面观察 \(d''\) :
下面的图中, 记o为球, d为当前子问题的(期望)每段段长, _为坑, 新d''是从左往右标号的.
o o o o 考虑每种球掉落方案, 边界球往边界坑掉 是 特殊情况, 其余:
d1 d2 d3 d4 d5 d6 d7 d8 将相邻的三个d加在一起合成一段, 其他不变. 记段为(l,r)
_ _ _ _ _ 那么l=1..2n-2, 考虑每个di (1<=i<=n) 的贡献
\(l\le i-2\) 时, \(d_i\to d''_{i-2}\). \(l=i-1\) 时, \(d_i\to d''_{i-1}\). \(l\ge i\) 时, \(d_i\to d''_{i}\) , 总的来看就是
\(d''_i = d_i+d_{i+2}+i*d_{i+2}+d_{i+1}+(2n-2-i+1)*d_i=(2n-i)d_i+d_{i+1}+(i+1)d_{i+2}\)
\(=(2n+2)d_0+3\Delta + (2n+4)i\Delta\) , 于是原问题等差, 合并后子问题等差, \(\cdots\), 都等差.
实现很简单
Code
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cctype>
#include <cmath>
#include <algorithm>
#define rep(i, a, b) for (int i = (a), _ = (b); i <= _; ++ i)
#define per(i, a, b) for (int i = (a), _ = (b); i >= _; -- i)
#define For(i, a, b) for (int i = (a), _ = (b); i < _; ++ i)
#define ri rd<int>
typedef long double db;
using namespace std;
template<class T> inline T rd() {
bool f = 1; char c = getchar(); for (; !isdigit(c); c = getchar()) if (c == '-') f = 0;
T x = 0; for (; isdigit(c); c = getchar()) x = x * 10 + c - 48; return f ? x : -x;
}
int n;
db d0, delta, ans;
inline db calc(db d0, db delta, db len) {
return len * d0 + delta * len * (len + 1) / 2;
}
int main() {
n = ri(), d0 = ri(), delta = ri(), d0 -= delta;
per (i, n, 1) {
ans += calc(d0, delta, 2 * i) / (2 * i);
d0 = (2 * i + 2) * d0 + 3 * delta;
delta *= (2 * i + 4);
d0 /= 2 * i;
delta /= 2 * i;
}
printf("%.15Lf\n", ans);
return 0;
}
AGC007 - C Pushing Ball的更多相关文章
- 【AtCoder】AGC007
AGC007 A - Shik and Stone 如果i + j走过的格子只有一个,那么就是可以走到 #include <bits/stdc++.h> #define fi first ...
- AOJ 0033 Ball【DFS】
有一个筒,从A口可以放球,放进去的球可通过挡板DE使其掉进B管或C管里,现有带1-10标号的球按给定顺序从A口放入,问是否有一种控制挡板的策略可以使B管和C管中的球从下往上标号递增. 输入: 第一行输 ...
- iOS 因为reason: 'Pushing the same view controller instance more than once is not supported而奔溃(下)
这个问题是什么意思呢,之前遇到过几次,但程序再次打开时没有问题,也就没有重视,今天又遇到了,无法忍受啊. 控制台报的错误是:"不支持多次推入相同的视图控制器实例". 什么原因造成的 ...
- var ball0=new Ball("executing") 是怎样被执行的?
function Ball(message){ alert(message); }; var ball0=new Ball("executing"); //var ball0=ne ...
- blue and red ball
#include<iostream> #include<cstring> using namespace std; int sum; ]; int n; int head; i ...
- HDU 1556 Color the ball(线段树区间更新)
Color the ball 我真的该认真的复习一下以前没懂的知识了,今天看了一下线段树,以前只会用模板,现在看懂了之后,发现还有这么多巧妙的地方,好厉害啊 所以就应该尽量搞懂 弄明白每个知识点 [题 ...
- HD1556Color the ball(树状数组)
Color the ball Time Limit: 9000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)To ...
- Android Programming: Pushing the Limits -- Chapter 7:Android IPC -- ApiWrapper
前面两片文章讲解了通过AIDL和Messenger两种方式实现Android IPC.而本文所讲的并不是第三种IPC方式,而是对前面两种方式进行封装,这样我们就不用直接把Aidl文件,java文件拷贝 ...
- Android Programming: Pushing the Limits -- Chapter 7:Android IPC -- Messenger
Messenger类实际是对Aidl方式的一层封装.本文只是对如何在Service中使用Messenger类实现与客户端的通信进行讲解,对Messenger的底层不做说明.阅读Android Prog ...
随机推荐
- table选项卡
<!DOCTYPE html><html> <head> <meta charset="UTF-8"> <title>& ...
- 小白对异步IO的理解
前言 看到越来越多的大佬都在使用python的异步IO,协程等概念来实现高效的IO处理过程,可是我对这些概念还不太懂,就学习了一下. 因为是初学者,在理解上有很多不到位的地方,如果有错误,还希望能够有 ...
- EF实体部分更新的问题
之前遇到只更新部分的问题:如前端修改用户信息(不修改密码),传实体到后台,这个实体是没有密码,这样一来要更新的话,得先去数据库通过传过来的实体的ID读取这条记录,然后将改动的部分填到查出来的记录中,再 ...
- 关于原生JS获取class,ID等属性的一些封装
一.传统上获取是通过document.getElementById获取元素的ID属性,通过总结与学习总结一下获取元素class以及id属性的一些封装; 1.创建构造函数,这里面不需要多解释什么:(主要 ...
- 20145202 《信息安全系统设计基础》git安装
git的安装 直接输入指令将其安装就可以了. 安装的时候要设置公钥,我不知道以前在windows上设置过的公钥是否还能用所以我就还是从新搞了一个. 验证可以连通 遇到的问题
- PHP.13-日历类实现
日历类实现 1.输出星期 calendar.class.php <?php class Calendar{ function out(){//输出表格 echo '<table align ...
- 内存释放free函数的异常问题
本次在实际应用中遇到一个问题,首先是定义了一个指针,然后这个指针指向某一个地址,但是这个地址不是用malloc分配的.如果后面用free去释放这个指针会产生什么现象. 首先看下指针的声明和使用 uin ...
- Hadoop 原理总结
Hadoop 原理总结 一.Hadoop技术原理 Hdfs主要模块:NameNode.DataNode Yarn主要模块:ResourceManager.NodeManager 常用命令: 1)用 ...
- 《Cracking the Coding Interview》——第8章:面向对象设计——题目3
2014-04-23 18:10 题目:设计一个点唱机. 解法:英文叫Musical Jukebox.这是点唱机么?卡拉OK么?这种题目实在是云里雾里,又没有交流的余地,我索性用一个vector来表示 ...
- WPF 利用键盘钩子来捕获键盘,做一些不为人知的事情...完整实例
键盘钩子是一种可以监控键盘操作的指令. 看到这句话是不是觉得其实键盘钩子可以做很多事情. 场景 当你的程序需要一个全局的快捷键时,可以考虑使用键盘钩子,如大家常用qq的截图快捷键,那么在WPF里怎么去 ...