基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题
将N分为若干个不同整数的和,有多少种不同的划分方式,例如:n = 6,{6} {1,5} {2,4} {1,2,3},共4种。由于数据较大,输出Mod 10^9 + 7的结果即可。

 
Input
输入1个数N(1 <= N <= 50000)。
Output
输出划分的数量Mod 10^9 + 7。
Input示例
6
Output示例
4

分析:这题关键在于不同的整数
一个包含数字最多的划分必定是1+2+3+....+m == n
这样(m + 1) * m <= 2 * n
可以确定m是O(sqrt(n))级别的
想到这里很容易想到用dp[i][j]表示I这个数分成j的数组成的划分有多少种。
方程为:dp[i][j] = dp[i - j][j] + dp[i - j][j - 1]
前者表示将i - j划分为j个数,每个数加1就是i划分为j个数的方案了。
但是前者这样有i-j的方案+1形成i分为j个数的方案是不完全的,因为没有1
后者则补充了这部分的答案,表示i-j划分为j个数,每个数+1,并且方案再加入一个1这个元素。
由于数不重复,所以1的个数只能为1个。 仍然用java写这些简单的题目。
 package p1201;

 import java.util.*;
import java.io.*; public class Main
{ /**
* @param args
*/
final static int MOD = (int) 1e9 + 7;
public static void main(String[] args)
{
// TODO Auto-generated method stub
Scanner reader = new Scanner(System.in);
PrintWriter writer = new PrintWriter(System.out); int n = reader.nextInt();
int m = 0;
while((1 + m) * m / 2 < n) m++; int [][] dp = new int[n + 1][m + 1];
dp[0][0] = 1;
for(int i = 1; i <= m; i++)
for(int j = (1 + i) * i / 2; j <= n; j++)
{
dp[j][i] = (dp[j - i][i] + dp[j - i][i - 1]) % MOD;
} int ans = 0;
for(int i = 1; i <= m; i++)
ans = (ans + dp[n][i]) % MOD;
writer.println(ans); reader.close();
writer.flush();
} }

51nod p1201 整数划分的更多相关文章

  1. 51nod 1201 整数划分 dp

    1201 整数划分 基准时间限制:1 秒 空间限制:131072 KB   收藏  关注 将N分为若干个不同整数的和,有多少种不同的划分方式,例如:n = 6,{6} {1,5} {2,4} {1,2 ...

  2. 51nod 1201 整数划分 基础DP

    1201 整数划分  基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题  收藏  关注 将N分为若干个不同整数的和,有多少种不同的划分方式,例如:n = 6,{6} ...

  3. 51Nod 1201 整数划分 (经典dp)

    题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1201 题意不多说了. dp[i][j]表示i这个数划分成j个数 ...

  4. 51nod 1201 整数划分

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1201 DP转移方程:dp[i][j] = dp[i-j][j]+dp[i ...

  5. 51nod 1201:整数划分 超级好的DP题目

    1201 整数划分 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题  收藏  关注 将N分为若干个不同整数的和,有多少种不同的划分方式,例如:n = 6,{6} { ...

  6. 2014北大研究生推免机试(校内)-复杂的整数划分(DP进阶)

    这是一道典型的整数划分题目,适合正在研究动态规划的同学练练手,但是和上一个随笔一样,我是在Coursera中评测通过的,没有找到适合的OJ有这一道题(找到的ACMer拜托告诉一声~),这道题考察得较全 ...

  7. 整数划分 (区间DP)

    整数划分(四) 时间限制:1000 ms  |  内存限制:65535 KB 难度:3   描述 暑假来了,hrdv 又要留学校在参加ACM集训了,集训的生活非常Happy(ps:你懂得),可是他最近 ...

  8. nyoj 90 整数划分

    点击打开链接 整数划分 时间限制:3000 ms  |  内存限制:65535 KB 难度:3 描述 将正整数n表示成一系列正整数之和:n=n1+n2+-+nk,  其中n1≥n2≥-≥nk≥1,k≥ ...

  9. 整数划分 Integer Partition(二)

    本文是整数划分的第二节,主要介绍整数划分的一些性质. 一 先来弥补一下上一篇文章的遗留问题:要求我们所取的 (n=m1+m2+...+mi )中  m1 m2 ... mi连续,比如5=1+4就不符合 ...

随机推荐

  1. TypeError: 'bool' object is not callable g.user.is_authenticated()

    此问题查了stackoverflow后知道is_authenticated是一个属性而不是一个方法所以g.user.is_authenticated() 用法会报错

  2. 使用JSF框架过程中的若干典型问题及其解决方案

    1.commandXxx点击后,不调用action中的方法: 原因1:xhtml后缀名的文件,最终也会转化为普通的html文件(这是熟悉JSF框架的关键.),commandXxx点击后不调用后台act ...

  3. Qt、VTK配置常见问题

    QVTKWidget undefined reference to 问题,一定要在pro文件中添加库 libvtkGUISupportQt-6.3. 2. CMAKE_MAKE_PROGRAM     ...

  4. 用jsp的application写一个记录用户登陆网站的数量

    </head><body><%int i = 0;Object number = application.getAttribute("num");if ...

  5. UIScrollView的其他属性

    @property(nonatomic) BOOL bounces; 设置UIScrollView是否需要弹簧效果 @property(nonatomic,getter=isScrollEnabled ...

  6. 提高PHP代码质量的36个技巧

    1.不要使用相对路径 常常会看到: require_once('../../lib/some_class.php'); 该方法有很多缺点: 它首先查找指定的php包含路径, 然后查找当前目录. 因此会 ...

  7. PHP如何将session保存到memcached中?如何分布式保存PHP session

    session_set_save_handler无关的memcached保存session的方法 在memcached服务器上 1)下载memcached #wget http://memcached ...

  8. 【Android学习】android:layout_weight的用法实例

    对于android:layout_weight的用法,用下面的例子来说明: <LinearLayout xmlns:android="http://schemas.android.co ...

  9. python之路四

    内建函数 内建函数详解: 1. abs(x) abs()函数返回数字(可为普通型.长整型或浮点型)的绝对值.如果给出复数,返回值就是该复数的模.例如: >>>print abs(-2 ...

  10. Websocket通讯简析

    什么是Websocket Websocket是一种全新的协议,不属于HTTP无状态协议,协议名为"ws",这意味着一个Websocket连接地址会是这样的写法:ws://**.We ...