使用DeepKE训练命名实体识别模型DEMO(官方DEMO)

说明:

如果需要,设置Github镜像

git config --system url."https://githubfast.com/".insteadOf https://github.com/

如果要取消,则输入:
git config --system --unset url.https://githubfast.com/.insteadof

创建conda环境

conda create -n deepke python=3.8
conda activate deepke # 安装torch
pip install torch==1.11.0+cu113 torchvision==0.12.0+cu113 torchaudio==0.11.0 --extra-index-url https://download.pytorch.org/whl/cu113 # 使用阿里云镜像安装torch 1.11.0
# pip install https://mirrors.aliyun.com/pytorch-wheels/cu113/torch-1.11.0+cu113-cp38-cp38-linux_x86_64.whl https://mirrors.aliyun.com/pytorch-wheels/cu113/torchvision-0.12.0+cu113-cp38-cp38-linux_x86_64.whl https://mirrors.aliyun.com/pytorch-wheels/cu113/torchaudio-0.11.0+cu113-cp38-cp38-linux_x86_64.whl -i https://mirrors.aliyun.com/pypi/simple/

安装DeepKE:

git clone https://github.com/zjunlp/DeepKE.git
cd DeepKE pip install pip==24.0 pip install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/
python setup.py install
python setup.py develop
pip install prettytable==2.4.0
pip install ipython==8.12.0

下载数据集

# apt-get install wget
cd example/ner/standard
wget 120.27.214.45/Data/ner/standard/data.tar.gz
tar -xzvf data.tar.gz

可以看到data文件夹下有:

  • train.txt: Training set
  • valid.txt : Validation set
  • test.txt: Test set

配置wandb

https://wandb.ai/ 上注册账号,并新建一个project,取一个名字,比如:deepke-ner-official-demo

打开 https://wandb.ai/authorize 获取 API key

运行 wandb init,输入刚获取的 API key 和创建的project

运行训练和预测

删除之前训练时保存的checkpoints和logs文件夹(如果有):

rm -r checkpoints/
rm -r logs/

lstmcrf

打开 example/ner/standard/run_lstmcrf.py, 确保wandb和yaml库有正常导入:

import wandb
import yaml

修改wandb的project名称:

if config['use_wandb']:
wandb.init(project="deepke-ner-official-demo")

修改 example/ner/standard/conf/config.yaml 中的 use_wandbTrue

如果需要使用多个GPU训练,修改 example/ner/standard/conf/train.yaml 中的 use_multi_gpuTrue

开始训练:

python run_lstmcrf.py
>> total: 109870 loss: 27.181508426008552
precision recall f1-score support B-LOC 0.8920 0.8426 0.8666 1951
B-ORG 0.8170 0.7439 0.7787 984
B-PER 0.8783 0.8167 0.8464 884
I-LOC 0.8650 0.8264 0.8453 2581
I-ORG 0.8483 0.8365 0.8424 3945
I-PER 0.8860 0.8436 0.8643 1714
O 0.9861 0.9912 0.9886 97811 accuracy 0.9732 109870
macro avg 0.8818 0.8430 0.8618 109870
weighted avg 0.9727 0.9732 0.9729 109870

用于的预测文本保存在example/ner/standard/conf/predict.yaml中,修改为如下:

text: "“热水器等以旧换新,节省了2000多元。”10月3日,在湖北省襄阳市的一家购物广场,市民金煜轻触手机,下单、付款、登记。湖北着力推动大规模设备更新和消费品以旧换新。“力争到今年底,全省汽车报废更新、置换更新分别达到4.5万辆、12.5万辆,家电以旧换新170万套。”湖北省商务厅厅长龙小红介绍。"

运行预测:

python predict.py

NER结果:

[('湖', 'B-LOC'), ('北', 'I-LOC'), ('省', 'I-LOC'), ('襄', 'B-LOC'), ('阳', 'I-LOC'), ('市', 'I-LOC'), ('场', 'I-LOC'), ('煜', 'I-PER'), ('湖', 'B-ORG'), ('北', 'I-ORG'), ('省', 'I-ORG'), ('商', 'I-ORG'), ('务', 'I-ORG'), ('厅', 'I-ORG'), ('厅', 'I-ORG'), ('龙', 'B-PER'), ('小', 'I-PER'), ('红', 'I-PER')]

bert

修改 example/ner/standard/conf/config.yaml中的hydra/modelbert

bert的超参设置在 example/ner/standard/conf/hydra/model/bert.yaml,如有需要可以修改。

修改 example/ner/standard/conf/config.yaml 中的 use_wandbTrue

修改 example/ner/standard/run_bert.py 中的wandb的project名称:

    if cfg.use_wandb:
wandb.init(project="deepke-ner-official-demo")

根据需要,修改example/ner/standard/conf/train.yaml中的train_batch_size,对于bert来说推荐不小于64

开始训练:

export HF_ENDPOINT=https://hf-mirror.com
python run_bert.py

w2ner

w2ner是一个新的SOTA模型。

基于W2NER (AAAI’22)的应对多种场景的实体识别方法 (详情请查阅论文Unified Named Entity Recognition as Word-Word Relation Classification).

命名实体识别 (NER) 涉及三种主要类型,包括平面、重叠(又名嵌套)和不连续的 NER,它们大多是单独研究的。最近,人们对统一 NER 越来越感兴趣, W2NER使用一个模型同时处理上述三项工作。

由于使用单卡GPU,修改example/ner/standard/w2ner/conf/train.yaml中的 device0

修改example/ner/standard/w2ner/conf/train.yaml中的data_dirdo_train

data_dir: "../data"
do_train: True

以便使用之前下载的数据集和开始训练。

运行训练:

python run.py

使用DeepKE训练命名实体识别模型DEMO(官方DEMO)的更多相关文章

  1. 使用modelarts部署bert命名实体识别模型

    模型部署介绍 当我们通过深度学习完成模型训练后,有时希望能将模型落地于生产,能开发API接口被终端调用,这就涉及了模型的部署工作.Modelarts支持对tensorflow,mxnet,pytorc ...

  2. 通俗理解BiLSTM-CRF命名实体识别模型中的CRF层

    虽然网上的文章对BiLSTM-CRF模型介绍的文章有很多,但是一般对CRF层的解读比较少. 于是决定,写一系列专门用来解读BiLSTM-CRF模型中的CRF层的文章. 我是用英文写的,发表在了gith ...

  3. 基于BERT预训练的中文命名实体识别TensorFlow实现

    BERT-BiLSMT-CRF-NERTensorflow solution of NER task Using BiLSTM-CRF model with Google BERT Fine-tuni ...

  4. 『深度应用』NLP命名实体识别(NER)开源实战教程

    近几年来,基于神经网络的深度学习方法在计算机视觉.语音识别等领域取得了巨大成功,另外在自然语言处理领域也取得了不少进展.在NLP的关键性基础任务—命名实体识别(Named Entity Recogni ...

  5. 抛弃模板,一种Prompt Learning用于命名实体识别任务的新范式

    原创作者 | 王翔 论文名称: Template-free Prompt Tuning for Few-shot NER 文献链接: https://arxiv.org/abs/2109.13532 ...

  6. 命名实体识别,使用pyltp提取文本中的地址

    首先安装pyltp pytlp项目首页 单例类(第一次调用时加载模型) class Singleton(object): def __new__(cls, *args, **kwargs): if n ...

  7. 使用哈工大LTP进行文本命名实体识别并保存到txt

    版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明.本文链接:https://blog.csdn.net/broccoli2/article/det ...

  8. DL4NLP —— 序列标注:BiLSTM-CRF模型做基于字的中文命名实体识别

    三个月之前 NLP 课程结课,我们做的是命名实体识别的实验.在MSRA的简体中文NER语料(我是从这里下载的,非官方出品,可能不是SIGHAN 2006 Bakeoff-3评测所使用的原版语料)上训练 ...

  9. 零基础入门--中文命名实体识别(BiLSTM+CRF模型,含代码)

    自己也是一个初学者,主要是总结一下最近的学习,大佬见笑. 中文分词说到命名实体抽取,先要了解一下基于字标注的中文分词.比如一句话 "我爱北京天安门”. 分词的结果可以是 “我/爱/北京/天安 ...

  10. HMM(隐马尔科夫模型)与分词、词性标注、命名实体识别

    转载自 http://www.cnblogs.com/skyme/p/4651331.html HMM(隐马尔可夫模型)是用来描述隐含未知参数的统计模型,举一个经典的例子:一个东京的朋友每天根据天气{ ...

随机推荐

  1. RPC接口测试(六)RPC协议解析(重要!重要!重要!)

    RPC协议解析 RPC(Remote Procedure Call Protocol)远程过程调用协议,它是一种通过网络从远程计算机程序上请求服务,而不需要了解底层网络技术的协议.简言之,RPC使得程 ...

  2. 【Dos-BatchPrograming】04

    --1.PING 主机联通性检测 Microsoft Windows [版本 10.0.19041.746] (c) 2020 Microsoft Corporation. 保留所有权利. C:\Us ...

  3. python3.13是否移除了GIL的限制

    近日看到新闻: https://baijiahao.baidu.com/s?id=1773013936355276204&wfr=spider&for=pc https://www.t ...

  4. 数据库存储时间数据用timestamp 好还是 varchar好

    表示日期数据基本是date型,只有年月的用varchar2或者char,好处见下:1.数据规范.date对合法日期型会校验,包括闰年2月这种.避免字符型变量产生的某月32号,日期长度不对,日期格式不统 ...

  5. vscode 下配置 clang

    需要在workspace的文件夹下添加文件: .clang-format 更多参数说明: https://clang.llvm.org/docs/ClangFormatStyleOptions.htm ...

  6. 2023 ICPC 合肥游记

    board zsy 11.24 开始嗓子疼了,但可以忍受.晚上睡的很不舒服 11.25 起床就开始难受,还得骑车到地铁站,应该打个车来着.不过路上拍到了很好看的朝霞(写到这里才想起来还没发朋友圈给 t ...

  7. 3. 从0开始学ARM-ARM模式、寄存器、流水线

    关于ARM的一些基本概念,大家可以参考我之前的文章: <到底什么是Cortex.ARMv8.arm架构.ARM指令集.soc?一文帮你梳理基础概念[科普]> 关于ARM指令用到的IDE开发 ...

  8. Windows 10 美化 Mac OSX 实用教程

    我前几天给新电脑装上了Windows 10系统,想要美化一下,遇到了很多问题,就出了这篇博客,帮大家踩踩坑. 在开始之前,先提醒大家一句: 美化有风险,玩机需谨慎.为以防万一,请大家在进行任何操作前创 ...

  9. MarkDown语法教程(转)

    https://blog.csdn.net/2301_77569009/article/details/137957203

  10. keycloak~scope客户端模板的使用

    scope为何物? scope在oauth2中表示授权的范围,另外也可以理解为,根据认证时scope的参数,在构建jwt时,返回更多的信息:比如在keycloak中,你的可选scope(optiona ...