【转载】 Tensorflow如何直接使用预训练模型(vgg16为例)
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/weixin_44633882/article/details/89054159
------------------------------------------------------------------------------------------
PS: 已给出相关的代码Demo,代码地址:
https://gitee.com/devilmaycry812839668/vgg16_inference
-------------------------------------------------------------------
主流的CNN模型基本都会使用VGG16或者ResNet等网络作为预训练模型,正好有个朋友和我说发给他一个VGG16的预训练模型和代码,我就整理了一下。在这里也分享一下,方便大家直接使用。
系统环境
- Tensorflow-gpu 1.12.0
- Python 3.5.2
资料来源
官方slim说明
https://github.com/tensorflow/models/tree/1af55e018eebce03fb61bba9959a04672536107d/research/slim
主页里直接可以看到所提供的模型列表和下载链接。

我们选择vgg16来做个示范哈,虽然vgg16的准确率现在已经不算高。

拿到vgg_16.ckpt模型文件!
直接贴上代码
vgg16预训练模型使用代码
import os
import numpy as np
import tensorflow as tf
slim = tf.contrib.slim
PROJECT_PATH = os.path.dirname(os.path.abspath(os.getcwd()))
# 预训练模型位置
tf.app.flags.DEFINE_string('pretrained_model_path', os.path.join(PROJECT_PATH, 'data/vgg_16.ckpt'), '')
FLAGS = tf.app.flags.FLAGS def vgg_arg_scope(weight_decay=0.1):
"""定义 VGG arg scope.
Args:
weight_decay: The l2 regularization coefficient.
Returns:
An arg_scope.
"""
with slim.arg_scope([slim.conv2d, slim.fully_connected],
activation_fn=tf.nn.relu,
weights_regularizer=slim.l2_regularizer(weight_decay),
biases_initializer=tf.zeros_initializer()):
with slim.arg_scope([slim.conv2d], padding='SAME') as arg_sc:
return arg_sc def vgg16(inputs,scope='vgg_16'):
with tf.variable_scope(scope, 'vgg_16', [inputs]) as sc:
# Collect outputs for conv2d, fully_connected and max_pool2d.
with slim.arg_scope([slim.conv2d, slim.fully_connected, slim.max_pool2d],):
# outputs_collections=end_points_collection):
net = slim.repeat(inputs, 2, slim.conv2d, 64, [3, 3], scope='conv1')
net = slim.max_pool2d(net, [2, 2], scope='pool1')
net = slim.repeat(net, 2, slim.conv2d, 128, [3, 3], scope='conv2')
net = slim.max_pool2d(net, [2, 2], scope='pool2')
net = slim.repeat(net, 3, slim.conv2d, 256, [3, 3], scope='conv3')
net = slim.max_pool2d(net, [2, 2], scope='pool3')
net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3], scope='conv4')
net = slim.max_pool2d(net, [2, 2], scope='pool4')
net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3], scope='conv5')
# net = slim.max_pool2d(net, [2, 2], scope='pool5')
# net = slim.fully_connected(net, 4096, scope='fc6')
# net = slim.dropout(net, 0.5, scope='dropout6')
# net = slim.fully_connected(net, 4096, scope='fc7')
# net = slim.dropout(net, 0.5, scope='dropout7')
# net = slim.fully_connected(net, 1000, activation_fn=None, scope='fc8')
return net def net():
input_image = tf.placeholder(tf.float32, shape=[None, None, None, 3], name='input_image')
with slim.arg_scope(vgg_arg_scope()):
conv5_3 = vgg16(input_image) # vgg16网络 init = tf.global_variables_initializer()
# restore预训练模型op
if FLAGS.pretrained_model_path is not None:
variable_restore_op = slim.assign_from_checkpoint_fn(FLAGS.pretrained_model_path,
slim.get_trainable_variables(),
ignore_missing_vars=True)
with tf.Session() as sess:
sess.run(init)
if FLAGS.pretrained_model_path is not None:
# resotre 预训练模型
variable_restore_op(sess)
a = sess.run([conv5_3],feed_dict={input_image:np.arange(360000).reshape(1,300,400,3)}) if __name__ == '__main__':
net()
print(tf.trainable_variables())
讲一讲,代码里要注意的地方吧,也比较简单易懂。
1.vgg_arg_scope
def vgg_arg_scope(weight_decay=0.1):
with slim.arg_scope([slim.conv2d, slim.fully_connected],
activation_fn=tf.nn.relu,
weights_regularizer=slim.l2_regularizer(weight_decay),
biases_initializer=tf.zeros_initializer()):
with slim.arg_scope([slim.conv2d], padding='SAME') as arg_sc:
return arg_sc
vgg_arg_scope()函数返回了一个scope参数空间,使用起来就是with slim.arg_scope(vgg_arg_scope()):,
它规定了[slim.conv2d, slim.fully_connected]都要满足什么变量参数,比如:激活函数,参数初始化。
拿activation_fn=tf.nn.relu来说,所有在这个变量空间中的conv2d卷积和fully_connected全连接都是指定了relu作为激活函数。
当然,这里存在覆盖是可以的,可以嵌套arg_scope进行设置,内层空间覆盖了外层空间,最内层的就是slim.conv2d()里传入指定的参数了,这是覆盖了所有外层的。变量空间在我看来,非常方便,也使网络定义变得简单。
2.slim.repeat()
在VGG16中比如一个conv,其中做了3次相同的卷积,写出来的代码就很长,使用repeat()就简单一句话net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3], scope='conv5')增强了代码可读性,而有人可能会问,那三层卷积层怎么进行标识呢?
当然没问题,你输出变量会发现是类似conv5/conv5_1,在_后面递增自动标记区分。
3.代码里是每个层是如何拿到自己对应的模型参数呢?
这个应该是有些人的困惑吧,毕竟不知道这个,也只能拿着代码直接用。这个的关键是变量空间。
网络定义完成了,你可以通过 print(tf.trainable_variables()) 来获得所有网络中的变量。
我贴出来 vgg16 中的变量,太多了,捡重要的说,就说说 conv1,可以看到变量是这么标识的 vgg_16/conv1/conv1_1/weights,前面有很多前缀,就和龙母报出来自己一堆头衔一样,其实是起到一个定位效果。
# [<tf.Variable 'vgg_16/conv1/conv1_1/weights:0' shape=(3, 3, 3, 64) dtype=float32_ref>,
# <tf.Variable 'vgg_16/conv1/conv1_1/biases:0' shape=(64,) dtype=float32_ref>,
# <tf.Variable 'vgg_16/conv1/conv1_2/weights:0' shape=(3, 3, 64, 64) dtype=float32_ref>,
# <tf.Variable 'vgg_16/conv1/conv1_2/biases:0' shape=(64,) dtype=float32_ref>,
# <tf.Variable 'vgg_16/conv2/conv2_1/weights:0' shape=(3, 3, 64, 128) dtype=float32_ref>,
在代码里,我们要让每个层在预训练模型里找到自己对应的参数,就必须这么定义变量空间。
with tf.variable_scope(scope, 'vgg_16', [inputs]) as sc:
with slim.arg_scope([slim.conv2d, slim.fully_connected, slim.max_pool2d]):
net = slim.repeat(inputs, 2, slim.conv2d, 64, [3, 3], scope='conv1')
看到了 scope 和 ‘vgg_16’两个,其实 scope 我们也传入的是 ’vgg_16’,tf.variable_scope() 的参数,前两个是 name_or_scope, default_name。默认名称是当 name_or_scope 为空时,使用的默认名称。
这么整理一下,'vgg_16', 后面的slim.repeat()里的scope='conv1',还有自动标记的 conv1_1。
连起来就是 vgg_16/conv1/conv1_1 。
4. 预训练模型restore。
先准备op,而且若 pretrained_model_path 不为空,才加入和使用 variable_restore_op
if FLAGS.pretrained_model_path is not None:
variable_restore_op = slim.assign_from_checkpoint_fn(FLAGS.pretrained_model_path,
slim.get_trainable_variables(),
ignore_missing_vars=True)
在Session()中使用
if FLAGS.pretrained_model_path is not None:
variable_restore_op(sess)
讲解完毕!哦,还有补充一下,一般vgg16来说,只会拿conv5_3的输出,继续做fine-tune。所以,你只用conv5_3,测试的时候是不用在意输入图片的大小的,因为都是卷积嘛。但是,我测试的时候,传入了个(1,3,6,3)的数组,出现了这么一个错。想了想,嗯,应该是这个数组做不了那么多次卷积的,所以Tensorflow报错了。(这里只是简单记录一下),所以用一个大一些的数组传入就可以啦
2019-04-06 12:20:14.650154: F tensorflow/stream_executor/cuda/cuda_dnn.cc:542] Check failed: cudnnSetTensorNdDescriptor(handle_.get(), elem_type, nd, dims.data(), strides.data()) == CUDNN_STATUS_SUCCESS (3 vs. 0)batch_descriptor: {count: 1 feature_map_count: 128 spatial: 0 1 value_min: 0.000000 value_max: 0.000000 layout: BatchDepthYX}
bash: line 1: 2492 Aborted (core dumped) env "PYTHONUNBUFFERED"="1" "PYTHONPATH"="/tmp/pycharm_project_299:/home/benke/.pycharm_helpers/pycharm_matplotlib_backend" "PYCHARM_HOSTED"="1" "JETBRAINS_REMOTE_RUN"="1" "PYCHARM_MATPLOTLIB_PORT"="65407" "PYTHONIOENCODING"="UTF-8" '/opt/anaconda3/bin/python' '-u' '/tmp/pycharm_project_299/data/vgg.py'
---------------------------------------------------------------------------------------------
转者注:
tensorflow官方预训练模型下载链接:
https://github.com/tensorflow/models/tree/master/research/slim
上面的代码一直在自己电脑上无法跑通,后来发现需要报ckpt文件放在data文件里面,并且运行的主文件也必须在一个文件夹下面:

其次,也是最关键的就是如果你是使用GPU在做这个计算那么你的GPU内存应该要大于30G,这也就是我为什么最终只有换到了服务器上才能够在GPU Tesla V100 上跑通这个代码的原因。

更正一下, 后来发现多次跑这个代码不成功是因为windows平台下IDE的问题,最后在CMD里面成功运行,显卡为2070super:

【转载】 Tensorflow如何直接使用预训练模型(vgg16为例)的更多相关文章
- 我的Keras使用总结(3)——利用bottleneck features进行微调预训练模型VGG16
Keras的预训练模型地址:https://github.com/fchollet/deep-learning-models/releases 一个稍微讲究一点的办法是,利用在大规模数据集上预训练好的 ...
- 【转载】最强NLP预训练模型!谷歌BERT横扫11项NLP任务记录
本文介绍了一种新的语言表征模型 BERT--来自 Transformer 的双向编码器表征.与最近的语言表征模型不同,BERT 旨在基于所有层的左.右语境来预训练深度双向表征.BERT 是首个在大批句 ...
- 我的Keras使用总结(4)——Application中五款预训练模型学习及其应用
本节主要学习Keras的应用模块 Application提供的带有预训练权重的模型,这些模型可以用来进行预测,特征提取和 finetune,上一篇文章我们使用了VGG16进行特征提取和微调,下面尝试一 ...
- tensorflow利用预训练模型进行目标检测(二):预训练模型的使用
一.运行样例 官网链接:https://github.com/tensorflow/models/blob/master/research/object_detection/object_detect ...
- tensorflow利用预训练模型进行目标检测(一):安装tensorflow detection api
一.tensorflow安装 首先系统中已经安装了两个版本的tensorflow,一个是通过keras安装的, 一个是按照官网教程https://www.tensorflow.org/install/ ...
- tensorflow 预训练模型列表
tensorflow 预训练模型列表 https://github.com/tensorflow/models/tree/master/research/slim Pre-trained Models ...
- pytorch预训练模型的下载地址以及解决下载速度慢的方法
https://github.com/pytorch/vision/tree/master/torchvision/models 几乎所有的常用预训练模型都在这里面 总结下各种模型的下载地址: 1 R ...
- 【tf.keras】tf.keras加载AlexNet预训练模型
目录 从 PyTorch 中导出模型参数 第 0 步:配置环境 第 1 步:安装 MMdnn 第 2 步:得到 PyTorch 保存完整结构和参数的模型(pth 文件) 第 3 步:导出 PyTorc ...
- 文本分类实战(十)—— BERT 预训练模型
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 te ...
- 文本分类实战(九)—— ELMO 预训练模型
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 te ...
随机推荐
- liquibase常用操作
1.概述 Liquibase是一个用于跟踪.管理和应用数据库变化的开源的数据库重构工具.它将所有数据库的变化(包括结构和数据)都保存在XML文件中,便于版本控制. 本文旨在将平时工作中常用的一些操作进 ...
- 20 套监控平台统一成 1 套 Flashcat,国泰君安监控选型提效之路
author:宋庆羽-国泰君安期货 运维工作最重要的就是维护系统的稳定性,其中监控是保证系统稳定性很重要的一环.通过监控可以了解系统的运行状态,及时发现问题和系统隐患,有助于一线人员快速解决问题,提高 ...
- 三月十五号 anaconda 安装 tensorflow 教程
今天下载anaconda 并安装tensorflow 首先下载anaconda 因为官网下载特别慢 所有选择国内镜像网站 https://mirrors.tuna.tsinghua.edu.cn/a ...
- cerebro安装部署,es客户端优化界面
1.下载地址 https://github.com/lmenezes/cerebro/releases 2.下载cerebro-0.9.3.zip 运行bin/cerebro ,启动没有报错,并且命令 ...
- Android查看apk安装包的AndroidManifest.xml文件
Tips:当你看到这个提示的时候,说明当前的文章是由原emlog博客系统搬迁至此的,文章发布时间已过于久远,编排和内容不一定完整,还请谅解` Android查看apk安装包的AndroidManife ...
- Unity UI优化
UI优化 动静分离.拆分UI.预加载.字体拆分.滚屏优化.网格重构优化.展示关闭优化.对象池.贴图优化.图集拼接优化.UI业务逻辑中GC优化等. 一.动静分离 ** 问题:**unity中UGUI系统 ...
- 13-nginx
关于nginx nginx是提供http服务的中间件. 这里推荐学习nginx的博客:朱双印的博客 安装 nginx的版本 主线版本(Mainline version) #最新版,不稳定 稳定版本(S ...
- Linux OpenGrok搭建
目录 一.目的 二.环境 三.相关概念 3.1 OpenGrok 3.2 CTags 3.3 Tomcat 四.OpenGrok搭建 4.1 安装jdk 4.2 安装ctags依赖 4.3 安装uni ...
- Bike Sharing Analysis(二)- 假设检验方法
假设检验 假设检验是推论统计学(inferential statistics)的一个分支,也就是对一个较小的.有代表性的数据组(例如样本集合)进行分析与评估,并依此推断出一个大型的数据组(例如人口)的 ...
- B码对时方案,基于TI AM62x异构多核工业处理器实现!
什么是IRIG-B码对时 IRIG-B(inter-range instrumentationgroup-B)码是一种时间同步标准,通常用于精确的时间测量和数据同步,广泛应用于电力.通信.航空等领域. ...