1、图像特征概述

图像特征的定义与表示

图像特征表示是该图像唯一的表述,是图像的DNA

图像特征提取概述

  • 传统图像特征提取 - 主要基于纹理、角点、颜色分布、梯度、边缘等
  • 深度卷积神经网络特征提取 - 基于监督学习、自动提取特征
  • 特征数据/特征属性
    • 尺度空间不变性
    • 像素迁移不变性
    • 光照一致性原则
    • 旋转不变性原则

图像特征应用

图像分类、对象识别、特征检测、图像对齐/匹配、对象检测、图像搜索/比对

  • 图像处理:从图像到图像
  • 特征提取:从图像到向量(数据)

2、角点检测

  • 什么是角点

  • 各个方向的梯度变化

  • Harris角点检测算法

    //函数说明:
    void cv::cornerHarris(
    InputArray src, //输入
    OutputArray dst, //输出
    int blockSize, //块大小
    int ksize, //Sobel
    double k, //常量系数
    int borderType = BORDER_DEFAULT //
    )
  • Shi-tomas角点检测算法

    //函数说明:
    void cv::goodFeaturesToTrack(
    InputArray image, //输入图像
    OutputArray corners, //输出的角点坐标
    int maxCorners, //最大角点数目
    double qualityLevel, //质量控制,即λ1与λ2的最小阈值
    double minDistance, //重叠控制,忽略多少像素值范围内重叠的角点
    InputArray mask = noArray(),
    int blockSize = 3,
    bool useHarrisDetector = false,
    double k = 0.04
    )
  • 代码实现

    #include <opencv2/opencv.hpp>
    #include <iostream> using namespace cv;
    using namespace std; int main(int argc, char** argv) { Mat src = imread("D:/images/building.png");
    Mat gray;
    cvtColor(src, gray, COLOR_BGR2GRAY);
    namedWindow("src", WINDOW_FREERATIO);
    imshow("src", src); RNG rng(12345);
    vector<Point> points;
    goodFeaturesToTrack(gray, points, 400, 0.05, 10);
    for (size_t t = 0; t < points.size(); t++) {
    circle(src, points[t], 3, Scalar(rng.uniform(0, 255), rng.uniform(0, 255), rng.uniform(0, 255)), 1.5, LINE_AA);
    } namedWindow("out", WINDOW_FREERATIO);
    imshow("out", src); waitKey(0);
    destroyAllWindows(); return 0;
    }
  • 效果:

3、关键点检测

  • 图像特征点/关键点
  • 关键点检测函数
  • 代码演示

ORB关键点检测(快速)

  • ORB算法由两个部分组成:快速关键点定位+BRIEF描述子生成

  • Fast关键点检测:选择当前像素点P,阈值T,周围16个像素点,超过连续N=12个像素点大于或者小于P,Fast1:优先检测1、5、9、13,循环所有像素点

关键点检测函数

//ORB对象创建
Orb = cv::ORB::create(500) virtual void cv::Feature2D::detect(
InputArray image, //输入图像
std::vector<KeyPoint>& keypoints, //关键点
InputArray mask = noArray() //支持mask
)

KeyPoint数据结构-四个最重要属性:

  • pt
  • angle
  • response
  • size

代码实现:

#include <opencv2/opencv.hpp>
#include <iostream> using namespace cv;
using namespace std; int main(int argc, char** argv) {
Mat src = imread("D:/images/building.png");
imshow("input", src);
//Mat gray;
//cvtColor(src, gray, COLOR_BGR2GRAY); auto orb = ORB::create(500);
vector<KeyPoint> kypts;
orb->detect(src, kypts); Mat result01, result02, result03;
drawKeypoints(src, kypts, result01, Scalar::all(-1), DrawMatchesFlags::DEFAULT);
drawKeypoints(src, kypts, result02, Scalar::all(-1), DrawMatchesFlags::DRAW_RICH_KEYPOINTS); imshow("ORB关键点检测default", result01);
imshow("ORB关键点检测rich", result02);
waitKey(0);
destroyAllWindows();
return 0;
}

效果:

4、特征描述子

  • 基于关键点周围区域
  • 浮点数表示与二值编码
  • 描述子长度

ORB特征描述子生成步骤:

  • 提取特征关键点
  • 描述子方向指派
  • 特征描述子编码(二值编码32位)

代码实现:

#include <opencv2/opencv.hpp>
#include <iostream> using namespace cv;
using namespace std; int main(int argc, char** argv) {
Mat src = imread("D:/images/building.png");
imshow("input", src);
//Mat gray;
//cvtColor(src, gray, COLOR_BGR2GRAY); auto orb = ORB::create(500); //获取500个关键点,每个关键点计算一个orb特征描述子
vector<KeyPoint> kypts;
orb->detect(src, kypts); Mat result01, result02, result03;
//drawKeypoints(src, kypts, result01, Scalar::all(-1), DrawMatchesFlags::DEFAULT);
//不同半径代表不同层级高斯金字塔中的关键点,即图像不同尺度中的关键点
drawKeypoints(src, kypts, result02, Scalar::all(-1), DrawMatchesFlags::DRAW_RICH_KEYPOINTS); Mat desc_orb;
orb->compute(src, kypts, desc_orb); std::cout << desc_orb.rows << " x " << desc_orb.cols << std::endl; //imshow("ORB关键点检测default", result01);
imshow("ORB关键点检测rich", result02);
waitKey(0);
destroyAllWindows();
return 0;
}

效果:

SIFT(尺度不变特征转换,Scale-invariant feature transform)特征描述子

  • 尺度空间不变性
  • 像素迁移不变性
  • 角度旋转不变性

SIFT特征提取步骤

  • 尺度空间极值检测
  • 关键点定位
  • 方向指派
  • 特征描述子

尺度空间极值检测

  • 构建尺度空间 -- 图像金字塔 + 高斯尺度空间
  • 三层空间中的极值查找

关键点定位

  • 极值点定位 - 求导拟合
  • 删除低对比度与低响应候选点

方向指派

  • 关键点方向指派
  • Scale尺度最近的图像,1.5倍大小的高斯窗口

特征描述子

  • 128维向量/特征描述子
  • 描述子编码方式

代码实现:

#include <opencv2/opencv.hpp>
#include <iostream> using namespace cv;
using namespace std; int main(int argc, char** argv) {
Mat src = imread("D:/images/building.png");
imshow("input", src);
//Mat gray;
//cvtColor(src, gray, COLOR_BGR2GRAY); auto sift = SIFT::create(500);
vector<KeyPoint> kypts;
sift->detect(src, kypts); Mat result01, result02, result03;
//drawKeypoints(src, kypts, result01, Scalar::all(-1), DrawMatchesFlags::DEFAULT);
drawKeypoints(src, kypts, result02, Scalar::all(-1), DrawMatchesFlags::DRAW_RICH_KEYPOINTS); std::cout << kypts.size() << std::endl; for (int i = 0; i < kypts.size(); i++) {
std::cout << "pt: " << kypts[i].pt << " angle: " << kypts[i].angle << " size: " << kypts[i].size << std::endl;
} Mat desc_orb;
sift->compute(src, kypts, desc_orb); std::cout << desc_orb.rows << " x " << desc_orb.cols << std::endl; //imshow("ORB关键点检测default", result01);
imshow("ORB关键点检测rich", result02);
waitKey(0);
destroyAllWindows();
return 0;
}

效果:

5、特征匹配

  • 特征匹配算法
  • 特征匹配函数
  • 特征匹配方法对比

特征匹配算法

  • 暴力匹配,全局搜索,计算最小距离,返回相似描述子合集

  • FLANN匹配,2009年发布的开源高维数据匹配算法库,全称Fast Library for Approximate Nearest Neighbors

  • 支持KMeans、KDTree、KNN、多探针LSH等搜索与匹配算法

描述子 匹配方法
SIFT, SURF, and KAZE L1 Norm
AKAZE, ORB, and BRISK Hamming distance(二值编码)
// 暴力匹配
auto bfMatcher = BFMatcher::create(NORM_HAMMING, false);
std::vector<DMatch> matches;
bfMatcher->match(box_descriptors, scene_descriptors, matches);
Mat img_orb_matches;
drawMatches(box, box_kpts, box_in_scene, scene_kpts, matches, img_orb_matches);
imshow("ORB暴力匹配演示", img_orb_matches); // FLANN匹配
auto flannMatcher = FlannBasedMatcher(new flann::LshIndexParams(6, 12, 2));
flannMatcher.match(box_descriptors, scene_descriptors, matches);
Mat img_flann_matches;
drawMatches(box, box_kpts, box_in_scene, scene_kpts, matches, img_flann_matches);
namedWindow("FLANN匹配演示", WINDOW_FREERATIO);
imshow("FLANN匹配演示", img_flann_matches);

特征匹配DMatch数据结构

DMatch数据结构:

  • queryIdx
  • trainIdx
  • distance

distance表示距离,值越小表示匹配程度越高。

OpenCV特征匹配方法对比

代码实现:

#include <opencv2/opencv.hpp>
#include <iostream> using namespace cv;
using namespace std; int main(int argc, char** argv) { Mat book = imread("D:/images/book.jpg");
Mat book_on_desk = imread("D:/images/book_on_desk.jpg");
imshow("book", book);
//Mat gray;
//cvtColor(src, gray, COLOR_BGR2GRAY); vector<KeyPoint> kypts_book;
vector<KeyPoint> kypts_book_on_desk;
Mat desc_book, desc_book_on_desk; //auto orb = ORB::create(500);
//orb->detectAndCompute(book, Mat(), kypts_book, desc_book);
//orb->detectAndCompute(book_on_desk, Mat(), kypts_book_on_desk, desc_book_on_desk); auto sift = SIFT::create(500);
sift->detectAndCompute(book, Mat(), kypts_book, desc_book);
sift->detectAndCompute(book_on_desk, Mat(), kypts_book_on_desk, desc_book_on_desk); Mat result;
vector<DMatch> matches; //// 暴力匹配
//auto bf_matcher = BFMatcher::create(NORM_HAMMING, false);
//bf_matcher->match(desc_book, desc_book_on_desk, matches);
//drawMatches(book, kypts_book, book_on_desk, kypts_book_on_desk, matches, result); // FLANN匹配
//auto flannMatcher = FlannBasedMatcher(new flann::LshIndexParams(6, 12, 2));
auto flannMatcher = FlannBasedMatcher();
flannMatcher.match(desc_book, desc_book_on_desk, matches);
Mat img_flann_matches;
drawMatches(book, kypts_book, book_on_desk, kypts_book_on_desk, matches, img_flann_matches);
namedWindow("SIFT-FLANN匹配演示", WINDOW_FREERATIO);
imshow("SIFT-FLANN匹配演示", img_flann_matches); //namedWindow("ORB暴力匹配演示", WINDOW_FREERATIO);
//imshow("ORB暴力匹配演示", result);
waitKey(0);
destroyAllWindows();
return 0;
}

效果:

1、ORB描述子匹配效果

2、SIFT描述子匹配效果

6、单应性变换/透视变换

Mat cv::findHomography(
InputArray srcPoints, // 输入
InputArray dstPoints, // 输出
int method = 0,
double ransacReprojThreshold = 3,
OuputArray mask = noArray(),
const int maxIters = 2000,
const double confidence = 0.995
)

拟合方法:

  • 最小二乘法(0)
  • 随机采样一致性(RANSC)
  • 渐进采样一致性(RHO)

代码实现:

#include <opencv2/opencv.hpp>
#include <iostream> using namespace std;
using namespace cv; int main(int argc, char** argv) { Mat input = imread("D:/images/book_on_desk.jpg");
Mat gray, binary;
cvtColor(input, gray, COLOR_BGR2GRAY);
threshold(gray, binary, 0, 255, THRESH_BINARY | THRESH_OTSU); vector<vector<Point>> contours;
vector<Vec4i> hierachy;
findContours(binary, contours, hierachy, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE);
int index = 0;
for (size_t i = 0; i < contours.size(); i++) {
if (contourArea(contours[i]) > contourArea(contours[index])) {
index = i;
}
} Mat approxCurve;
approxPolyDP(contours[index], approxCurve, contours[index].size() / 10, true); //imshow("approx", approxCurve); //std::cout << contours.size() << std::endl;
vector<Point2f> srcPts;
vector<Point2f> dstPts; for (int i = 0; i < approxCurve.rows; i++) {
Vec2i pt = approxCurve.at<Vec2i>(i, 0);
srcPts.push_back(Point(pt[0], pt[1]));
circle(input, Point(pt[0], pt[1]), 12, Scalar(0, 0, 255), 2, 8, 0);
putText(input, std::to_string(i), Point(pt[0], pt[1]), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(255, 0, 0), 1);
} dstPts.push_back(Point2f(0, 0));
dstPts.push_back(Point2f(0, 760));
dstPts.push_back(Point2f(585, 760));
dstPts.push_back(Point2f(585, 0)); Mat h = findHomography(srcPts, dstPts, RANSAC); //计算单应性矩阵
Mat result;
warpPerspective(input, result, h, Size(585, 760)); //对原图进行透视变换获得校正后的目标区域 namedWindow("result", WINDOW_FREERATIO);
imshow("result", result); drawContours(input, contours, index, Scalar(0, 255, 0), 2, 8);
namedWindow("轮廓", WINDOW_FREERATIO);
imshow("轮廓", input);
waitKey(0); return 0;
}

效果:

7、基于匹配的对象检测

  • 基于特征的匹配与对象检测
  • ORB/AKAZE/SIFT
  • 暴力/FLANN
  • 透视变换
  • 检测框

代码实现:

#include <opencv2/opencv.hpp>
#include <iostream> using namespace cv;
using namespace std; int main(int argc, char** argv) {
// Mat image = imread("D:/images/butterfly.jpg");
Mat book = imread("D:/images/book.jpg");
Mat book_on_desk = imread("D:/images/book_on_desk.jpg");
namedWindow("book", WINDOW_FREERATIO);
imshow("book", book);
auto orb = ORB::create(500);
vector<KeyPoint> kypts_book;
vector<KeyPoint> kypts_book_on_desk;
Mat desc_book, desc_book_on_desk;
orb->detectAndCompute(book, Mat(), kypts_book, desc_book);
orb->detectAndCompute(book_on_desk, Mat(), kypts_book_on_desk, desc_book_on_desk);
Mat result;
auto bf_matcher = BFMatcher::create(NORM_HAMMING, false);
vector<DMatch> matches;
bf_matcher->match(desc_book, desc_book_on_desk, matches); float good_rate = 0.15f;
int num_good_matches = matches.size() * good_rate;
std::cout << num_good_matches << std::endl;
std::sort(matches.begin(), matches.end()); matches.erase(matches.begin() + num_good_matches, matches.end()); drawMatches(book, kypts_book, book_on_desk, kypts_book_on_desk, matches, result);
vector<Point2f> obj_pts;
vector<Point2f> scene_pts;
for (size_t t = 0; t < matches.size(); t++) {
obj_pts.push_back(kypts_book[matches[t].queryIdx].pt);
scene_pts.push_back(kypts_book_on_desk[matches[t].trainIdx].pt);
} Mat h = findHomography(obj_pts, scene_pts, RANSAC); // 计算单应性矩阵h
vector<Point2f> srcPts;
srcPts.push_back(Point2f(0, 0));
srcPts.push_back(Point2f(book.cols, 0));
srcPts.push_back(Point2f(book.cols, book.rows));
srcPts.push_back(Point2f(0, book.rows)); std::vector<Point2f> dstPts(4);
perspectiveTransform(srcPts, dstPts, h); // 计算转换后书的四个顶点 for (int i = 0; i < 4; i++) {
line(book_on_desk, dstPts[i], dstPts[(i + 1) % 4], Scalar(0, 0, 255), 2, 8, 0);
}
namedWindow("暴力匹配", WINDOW_FREERATIO);
imshow("暴力匹配", result);
namedWindow("对象检测", WINDOW_FREERATIO);
imshow("对象检测", book_on_desk);
//imwrite("D:/object_find.png", book_on_desk);
waitKey(0);
return 0;
}

效果:

8、文档对齐

  • 模板表单/文档
  • 特征匹配与对齐

代码实现:

#include <opencv2/opencv.hpp>
#include <iostream> using namespace cv;
using namespace std; int main(int argc, char** argv) {
Mat ref_img = imread("D:/images/form.png");
Mat img = imread("D:/images/form_in_doc.jpg");
imshow("表单模板", ref_img);
auto orb = ORB::create(500);
vector<KeyPoint> kypts_ref;
vector<KeyPoint> kypts_img;
Mat desc_book, desc_book_on_desk;
orb->detectAndCompute(ref_img, Mat(), kypts_ref, desc_book);
orb->detectAndCompute(img, Mat(), kypts_img, desc_book_on_desk);
Mat result;
auto bf_matcher = BFMatcher::create(NORM_HAMMING, false);
vector<DMatch> matches;
bf_matcher->match(desc_book_on_desk, desc_book, matches);
float good_rate = 0.15f;
int num_good_matches = matches.size() * good_rate;
std::cout << num_good_matches << std::endl;
std::sort(matches.begin(), matches.end());
matches.erase(matches.begin() + num_good_matches, matches.end());
drawMatches(ref_img, kypts_ref, img, kypts_img, matches, result);
imshow("匹配", result);
imwrite("D:/images/result_doc.png", result); // Extract location of good matches
std::vector<Point2f> points1, points2;
for (size_t i = 0; i < matches.size(); i++)
{
points1.push_back(kypts_img[matches[i].queryIdx].pt);
points2.push_back(kypts_ref[matches[i].trainIdx].pt);
}
Mat h = findHomography(points1, points2, RANSAC); // 尽量用RANSAC,比最小二乘法效果好一些
Mat aligned_doc;
warpPerspective(img, aligned_doc, h, ref_img.size()); // 单应性矩阵h决定了其他无效区域不会被变换,只会变换target区域
imwrite("D:/images/aligned_doc.png", aligned_doc);
waitKey(0);
destroyAllWindows();
return 0;
}

效果:

9、图像拼接

  • 特征检测与匹配
  • 图像对齐与变换
  • 图像边缘融合

代码实现:

#include <opencv2/opencv.hpp>
#include <iostream>
#define RATIO 0.8
using namespace std;
using namespace cv; void linspace(Mat& image, float begin, float finish, int number, Mat &mask);
void generate_mask(Mat &img, Mat &mask);
int main(int argc, char** argv) {
Mat left = imread("D:/images/q11.jpg");
Mat right = imread("D:/images/q22.jpg");
if (left.empty() || right.empty()) {
printf("could not load image...\n");
return -1;
} // 提取特征点与描述子
vector<KeyPoint> keypoints_right, keypoints_left;
Mat descriptors_right, descriptors_left;
auto detector = AKAZE::create();
detector->detectAndCompute(left, Mat(), keypoints_left, descriptors_left);
detector->detectAndCompute(right, Mat(), keypoints_right, descriptors_right); // 暴力匹配
vector<DMatch> matches;
auto matcher = DescriptorMatcher::create(DescriptorMatcher::BRUTEFORCE); // 发现匹配
std::vector< std::vector<DMatch> > knn_matches;
matcher->knnMatch(descriptors_left, descriptors_right, knn_matches, 2);
const float ratio_thresh = 0.7f;
std::vector<DMatch> good_matches;
for (size_t i = 0; i < knn_matches.size(); i++)
{
if (knn_matches[i][0].distance < ratio_thresh * knn_matches[i][1].distance)
{
good_matches.push_back(knn_matches[i][0]);
}
}
printf("total good match points : %d\n", good_matches.size());
std::cout << std::endl; Mat dst;
drawMatches(left, keypoints_left, right, keypoints_right, good_matches, dst);
imshow("output", dst);
imwrite("D:/images/good_matches.png", dst); //-- Localize the object
std::vector<Point2f> left_pts;
std::vector<Point2f> right_pts;
for (size_t i = 0; i < good_matches.size(); i++)
{
// 收集所有好的匹配点
left_pts.push_back(keypoints_left[good_matches[i].queryIdx].pt);
right_pts.push_back(keypoints_right[good_matches[i].trainIdx].pt);
} // 配准与对齐,对齐到第一张
Mat H = findHomography(right_pts, left_pts, RANSAC); // 获取全景图大小
int h = max(left.rows, right.rows);
int w = left.cols + right.cols;
Mat panorama_01 = Mat::zeros(Size(w, h), CV_8UC3);
Rect roi;
roi.x = 0;
roi.y = 0;
roi.width = left.cols;
roi.height = left.rows; // 获取左侧与右侧对齐图像
left.copyTo(panorama_01(roi));
imwrite("D:/images/panorama_01.png", panorama_01);
Mat panorama_02;
warpPerspective(right, panorama_02, H, Size(w, h));
imwrite("D:/images/panorama_02.png", panorama_02); // 计算融合重叠区域mask
Mat mask = Mat::zeros(Size(w, h), CV_8UC1);
generate_mask(panorama_02, mask); // 创建遮罩层并根据mask完成权重初始化
Mat mask1 = Mat::ones(Size(w, h), CV_32FC1);
Mat mask2 = Mat::ones(Size(w, h), CV_32FC1); // left mask
linspace(mask1, 1, 0, left.cols, mask); // right mask
linspace(mask2, 0, 1, left.cols, mask); namedWindow("mask1", WINDOW_FREERATIO);
imshow("mask1", mask1);
namedWindow("mask2", WINDOW_FREERATIO);
imshow("mask2", mask2); // 左侧融合
Mat m1;
vector<Mat> mv;
mv.push_back(mask1);
mv.push_back(mask1);
mv.push_back(mask1);
merge(mv, m1);
panorama_01.convertTo(panorama_01, CV_32F);
multiply(panorama_01, m1, panorama_01); // 右侧融合
mv.clear();
mv.push_back(mask2);
mv.push_back(mask2);
mv.push_back(mask2);
Mat m2;
merge(mv, m2);
panorama_02.convertTo(panorama_02, CV_32F);
multiply(panorama_02, m2, panorama_02); // 合并全景图
Mat panorama;
add(panorama_01, panorama_02, panorama);
panorama.convertTo(panorama, CV_8U);
imwrite("D:/images/panorama.png", panorama);
waitKey(0);
return 0;
} void generate_mask(Mat &img, Mat &mask) {
int w = img.cols;
int h = img.rows;
for (int row = 0; row < h; row++) {
for (int col = 0; col < w; col++) {
Vec3b p = img.at<Vec3b>(row, col);
int b = p[0];
int g = p[1];
int r = p[2];
if (b == g && g == r && r == 0) {
mask.at<uchar>(row, col) = 255;
}
}
}
imwrite("D:/images/mask.png", mask);
} // 对mask中的0区域,进行逐行计算每个像素的权重值
void linspace(Mat& image, float begin, float finish, int w1, Mat &mask) {
int offsetx = 0;
float interval = 0;
float delta = 0;
for (int i = 0; i < image.rows; i++) {
offsetx = 0;
interval = 0;
delta = 0;
for (int j = 0; j < image.cols; j++) {
int pv = mask.at<uchar>(i, j);
if (pv == 0 && offsetx == 0) {
offsetx = j;
delta = w1 - offsetx;
interval = (finish - begin) / (delta - 1); // 计算每个像素变化的大小
image.at<float>(i, j) = begin + (j - offsetx)*interval;
}
else if (pv == 0 && offsetx > 0 && (j - offsetx) < delta) {
image.at<float>(i, j) = begin + (j - offsetx)*interval;
}
}
}
}

效果:

1、图像拼接重合区域mask

2、拼接前图像

3、图像拼接效果图

10、条码标签定位与有无判定

代码实现:

ORBDetector.h

#pragma once
#include <opencv2/opencv.hpp> class ORBDetector {
public:
ORBDetector(void);
~ORBDetector(void);
void initORB(cv::Mat &refImg);
bool detect_and_analysis(cv::Mat &image, cv::Mat &aligned);
private:
cv::Ptr<cv::ORB> orb = cv::ORB::create(500);
std::vector<cv::KeyPoint> tpl_kps;
cv::Mat tpl_descriptors;
cv::Mat tpl;
};

ORBDetector.cpp

#include "ORBDetector.h"

ORBDetector::ORBDetector() {
std::cout << "create orb detector..." << std::endl;
} ORBDetector::~ORBDetector() {
this->tpl_descriptors.release();
this->tpl_kps.clear();
this->orb.release();
this->tpl.release();
std::cout << "destory instance..." << std::endl;
} void ORBDetector::initORB(cv::Mat &refImg) {
if (!refImg.empty()) {
cv::Mat tplGray;
cv::cvtColor(refImg, tplGray, cv::COLOR_BGR2GRAY);
orb->detectAndCompute(tplGray, cv::Mat(), this->tpl_kps, this->tpl_descriptors);
tplGray.copyTo(this->tpl);
}
} bool ORBDetector::detect_and_analysis(cv::Mat &image, cv::Mat &aligned) {
// keypoints and match threshold
float GOOD_MATCH_PERCENT = 0.15f;
bool found = true;
// 处理数据集中每一张数据
cv::Mat img2Gray;
cv::cvtColor(image, img2Gray, cv::COLOR_BGR2GRAY);
std::vector<cv::KeyPoint> img_kps;
cv::Mat img_descriptors;
orb->detectAndCompute(img2Gray, cv::Mat(), img_kps, img_descriptors); std::vector<cv::DMatch> matches;
cv::Ptr<cv::DescriptorMatcher> matcher = cv::DescriptorMatcher::create("BruteForce-Hamming");
// auto flann_matcher = cv::FlannBasedMatcher(new cv::flann::LshIndexParams(6, 12, 2));
matcher->match(img_descriptors, this->tpl_descriptors, matches, cv::Mat()); // Sort matches by score
std::sort(matches.begin(), matches.end()); // Remove not so good matches
const int numGoodMatches = matches.size() * GOOD_MATCH_PERCENT;
matches.erase(matches.begin() + numGoodMatches, matches.end());
// std::cout << numGoodMatches <<"distance:"<<matches [0].distance<< std::endl;
if (matches[0].distance > 30) {
found = false;
}
// Extract location of good matches
std::vector<cv::Point2f> points1, points2;
for (size_t i = 0; i < matches.size(); i++)
{
points1.push_back(img_kps[matches[i].queryIdx].pt);
points2.push_back(tpl_kps[matches[i].trainIdx].pt);
} cv::Mat H = findHomography(points1, points2, cv::RANSAC);
cv::Mat im2Reg;
warpPerspective(image, im2Reg, H, tpl.size()); // 逆时针旋转90度
cv::Mat result;
cv::rotate(im2Reg, result, cv::ROTATE_90_COUNTERCLOCKWISE);
result.copyTo(aligned);
return found;
}

object_analysis.cpp

#include "ORBDetector.h"
#include <iostream> using namespace cv;
using namespace std; int main(int argc, char** argv) {
Mat refImg = imread("D:/facedb/tiaoma/tpl2.png");
ORBDetector orb_detector;
orb_detector.initORB(refImg);
vector<std::string> files;
glob("D:/facedb/orb_barcode", files);
cv::Mat temp;
for (auto file : files) {
std::cout << file << std::endl;
cv::Mat image = imread(file);
int64 start = getTickCount();
bool OK = orb_detector.detect_and_analysis(image, temp);
double ct = (getTickCount() - start) / getTickFrequency();
printf("decode time: %.5f ms\n", ct * 1000);
std::cout << "标签: " << (OK == true) << std::endl;
imshow("temp", temp);
waitKey(0);
}
}

效果:

1、检测图片

2、模板图片

11、DNN概述

DNN模块介绍:

  • DNN - Deep Neutal Network
  • OpenCV3.3 开始发布
  • 支持VOC与COCO数据集的对象检测模型
  • 包括SSD/Faster-RCNN/YOLOv4等
  • 支持自定义对象检测
  • 支持人脸检测

函数知识:

  • 读取模型
  • 转换数据与设置
  • 推理输出
Net net = readNetFromTensorflow(model, config);    // 支持tensorflow
Net net = readNetFromCaffe(config, model); // 支持caffe
Net net = readNetFromONNX(onnxfile); // 读取数据
Mat image = imread("D:/images/example.png");
Mat blob_img = blobFromImage(image, scalefactor, size, mean, swapRB);
net.setInput(blob_img); // 推理输出
Mat result = net.forward();

后处理/输出解析:

  • 不同网络的输出不同
  • 如何解析要根据模型输出
  • 对象检测网络SSD/Faster-RCNN解析

SSD的输出解析:

Faster-RCNN输出解析:

YOLOv4输出解析:

OpenCV4之特征提取与对象检测的更多相关文章

  1. [OpenCV-Python] OpenCV 中计算摄影学 部分 IX 对象检测 部分 X

    部分 IX计算摄影学 OpenCV-Python 中文教程(搬运)目录 49 图像去噪目标 • 学习使用非局部平均值去噪算法去除图像中的噪音 • 学习函数 cv2.fastNlMeansDenoisi ...

  2. 浏览器。浏览器对象检测、Chrome调试工具

    chrome浏览器的flash问题: 2017-12-26 chrome浏览器的flash有无法显示无法正常运行的问题时,解决方法如下: https://qzonestyle.gtimg.cn/qzo ...

  3. 斯坦福新深度学习系统 NoScope:视频对象检测快1000倍

    以作备份,来源http://jiasuhui.com/archives/178954 本文由“新智元”(微信ID:AI_era)编译,来源:dawn.cs.stanford.edu,编译:刘小芹 斯坦 ...

  4. 计算机视觉中的对象检测,Python用几段代码就能实现

    目前计算机视觉(CV)与自然语言处理(NLP)及语音识别并列为人工智能三大热点方向,而计算机视觉中的对象检测(objectdetection)应用非常广泛,比如自动驾驶.视频监控.工业质检.医疗诊断等 ...

  5. [object_detect]使用MobileNetSSD进行对象检测

    使用MobileNetSSD进行对象检测 1.单帧图片识别 object_detection.py # 导入必要的包 import numpy as np import argparse import ...

  6. [OpenCV实战]13 OpenCV中使用Mask R-CNN进行对象检测和实例分割

    目录 1 背景介绍 1.1 什么是图像分割和实例分割 1.2 Mask-RCNN原理 2 Mask-RCNN在OpenCV中的使用 2.1 模型下载 2.2 模型初始化 2.3 模型加载 2.4 输出 ...

  7. 【YOLO】实时对象检测使用体验

    官网:https://pjreddie.com/darknet/yolo/ 以下全部在服务器上完成,服务器上是有opencv等. 1.安装Darknet git clone https://githu ...

  8. 常用 对象检测 api

    isPrototypeOf()    判断某个 proptotype 对象和某个实例之间的关系 alert(Cat.prototype.isPrototypeOf(cat1)); //true ale ...

  9. python imageai 对象检测、对象识别

    imageai库里面提供了目标识别,其实也可以说是目标检测,和现在很多的收集一样就是物体识别.他可以帮你识别出各种各样生活中遇见的事物.比如猫.狗.车.马.人.电脑.收集等等. 感觉imageai有点 ...

  10. 针对unicode对象---检测字符串是否只由数字组成

随机推荐

  1. YOLO2论文中文版

    文章目录 YOLO9000中文版 摘要 1. 引言 2. 更好 3. 更快 4. 更强 5. 结论 参考文献 YOLO9000中文版 摘要 我们引入了一个先进的实时目标检测系统YOLO9000,可以检 ...

  2. 基于.NetCore开发博客项目 StarBlog - (27) 使用JWT保护接口

    前言 这是StarBlog系列在2023年的第二篇更新 这几个月都在忙,更新变得很不勤快,但是拖着不更新我的心里更慌,很久没写,要开头就变得很难 说回正题,之前的文章里,我们已经把博客关键的接口都开发 ...

  3. Vue中使用富文本编辑器

    原文链接:https://blog.csdn.net/qq_45695853/article/details/114635009

  4. 2020-10-18:java中LongAdder和AtomicLong有什么区别?

    福哥答案2020-10-18:#福大大架构师每日一题# 简单回答:AtomicLong是CAS操作.LongAdder是多个单元操作. 中级回答:AtomicLong 是基于 CAS 方式自旋更新的: ...

  5. Redis实战解读-初识Redis&Redis基本数据类型

    Redis实战解读 一.初识Redis 1.什么是Redis ​ Redis是一个速度非常快的非关系型数据库(non-relational database),它可以存储键(key)与五种不同类型的值 ...

  6. union()并集intersection()交集difference()差集

    union并集,即:合并 intersection()交集 difference()差集 qs1=Course.objects.filter(price__get=240) qs2=Course.ob ...

  7. 全网最详细解读《GIN-HOW POWERFUL ARE GRAPH NEURAL NETWORKS》!!!

    Abstract + Introduction GNNs 大都遵循一个递归邻居聚合的方法,经过 k 次迭代聚合,一个节点所表征的特征向量能够捕捉到距离其 k-hop 邻域的邻居节点的特征,然后还可以通 ...

  8. 2019年蓝桥杯C/C++大学B组省赛真题(迷宫)

    题目描述: 下图给出了一个迷宫的平面图,其中标记为1 的为障碍,标记为0 的为可 以通行的地方. 010000 000100 001001 110000 迷宫的入口为左上角,出口为右下角,在迷宫中,只 ...

  9. nodejs 中 stream.pipe()直接将文件输出到页面乱码

    最近仿照anywhere写个anyentry目录读取器,发现使用stream.pipe()将文件输入到页面时,出现中文乱码 看哇 看到着实不爽,不解决咋能算 于是开始寻找问题根源 一.配置encodi ...

  10. vue 一键导出数据为excel文件并附带样式 十分简单

    自入行以来我就一直疑惑一个问题,导出excel为什么总是搞的很复杂,包括网上的教程,屎里淘金,非常耗费精力.今天刚好业务需要,整理一个简单明了的由vue前端导出的版本出来. 开始: #1.添加xlsx ...