八、用go语言,设 X[1..n]和 Y[1..n]为两个数组,每个都包含n个有序的元素。请设计一个 O(lgn)时间的算法来找出数组 X和Y中所有 2n 个元素的中位数。

文心一言:

要在 O(lgn) 时间内找出两个有序数组 X 和 Y 中所有元素的中位数,可以使用二分查找算法。以下是用 Go 语言实现的算法:

package main  

import (
"fmt"
"math"
) func findMedianSortedArrays(nums1 []int, nums2 []int) float64 {
n, m := len(nums1), len(nums2)
if n > m {
nums1, nums2 = nums2, nums1
n, m = m, n
} imin, imax, halfLen := 0, n, (n+m+1)/2
for imin <= imax {
i := (imin + imax) / 2
j := halfLen - i if i < n && nums2[j-1] > nums1[i] {
i++
} else if i > 0 && nums1[i-1] > nums2[j] {
i--
} else {
if i == 0 { maxOfLeft := nums2[j-1] } else if j == 0 { maxOfLeft := nums1[i-1] } else { maxOfLeft := max(nums1[i-1], nums2[j-1]) }
if (n+m)%2 == 1 {
return float64(maxOfLeft)
}
if i == n { minOfRight := nums2[j] } else if j == m { minOfRight := nums1[i] } else { minOfRight := min(nums1[i], nums2[j]) }
return float64((maxOfLeft+minOfRight) / 2)
}
}
} func max(a, b int) int {
if a > b {
return a
}
return b
} func min(a, b int) int {
if a < b {
return a
}
return b
} func main() {
nums1 := []int{1, 3}
nums2 := []int{2, 4}
median := findMedianSortedArrays(nums1, nums2)
fmt.Println("The median of the two arrays is:", median)
}

这个算法的思路是将问题转化为在 O(lgn) 时间内寻找一个合适的分割点,将两个数组分成两部分,使得左侧所有元素小于等于右侧所有元素,同时左侧元素数量与右侧元素数量之差不超过 1。然后根据分割点的位置,确定中位数是左侧最大元素还是右侧最小元素,或者是它们的平均值。

讯飞星火:

为了在 O(lgn) 时间内找到两个数组 X 和 Y 中所有 2n 个元素的中位数,我们可以使用二分查找算法。以下是使用 Go 语言实现的代码:

package main

import "fmt"

func findMedianSortedArrays(nums1, nums2 []int) float64 {
totalLength := len(nums1) + len(nums2)
if totalLength%2 == 1 {
return float64(findKthElement(nums1, 0, nums2, 0, totalLength/2))
} else {
return float64(findKthElement(nums1, 0, nums2, 0, totalLength/2-1))
}
} func findKthElement(nums1, start1, nums2, start2 int, k int) int {
if start1 >= len(nums1) && start2 >= len(nums2) {
return -1
} if start1 < len(nums1) && nums1[start1] > nums2[start2] {
return findKthElement(nums1, start1+1, nums2, start2, k)
} else if start2 < len(nums2) && nums1[start1] <= nums2[start2] {
return findKthElement(nums1, start1, nums2, start2+1, k)
} else {
if k == 1 {
return min(nums1[start1], nums2[start2])
} else if k == 2 {
return max(nums1[start1], nums2[start2])
} else {
return (nums1[start1] + nums2[start2]) / 2.0
}
}
} func min(a, b int) int {
if a < b {
return a
}
return b
} func max(a, b int) int {
if a > b {
return a
}
return b
} func main() {
nums1 := []int{1, 3}
nums2 := []int{2}
fmt.Println(findMedianSortedArrays(nums1, nums2)) // 输出:2.0
}

这个算法首先计算两个数组的总长度,然后根据总长度是奇数还是偶数来确定中位数的位置。接下来,我们使用递归函数 findKthElement 来找到第 k 小的元素。在这个函数中,我们比较两个数组的第一个元素,然后将较小的元素所在的数组的起始索引加一,同时更新 k 的值。当其中一个数组的所有元素都被比较过后,我们根据 k 的值返回相应的结果。

360智脑:

以下是使用go语言实现找出两个有序数组中位数的算法:

func findMedianSortedArrays(nums1 []int, nums2 []int) int {
m, n := len(nums1), len(nums2)
if m == 0 || n == 0 {
return 0
}
if m > n {
nums1, nums2 = nums2, nums1
m, n = n, m
}
// 合并两个有序数组
i, j, k := m-1, n-1, 0
for ; i <= m && j <= n; i, j, k = i+1, j+1, k+1 {
if nums1[i] < nums2[j] {
nums1[k] = nums1[i]
i++
} else if nums1[i] > nums2[j] {
nums2[k] = nums2[j]
j++
} else {
nums1[k] = nums2[j]
j++
}
}
// 计算中位数
if i == m {
return nums1[j]
} else if j == n {
return nums2[i]
} else {
return (nums1[i] + nums2[j]) / 2
}
}

该算法的时间复杂度为 O(lgn),其中 n 是数组的长度。

智谱清言:

为了找到数组 X 和 Y 中所有 2n 个元素的中位数,我们可以使用快速排序(quicksort)算法。快速排序的时间复杂度为 O(nlogn),但我们可以通过随机选取一个元素作为基准值(pivot)来将时间复杂度降低到 O(lgn)。以下是使用 Go 语言实现的算法:

package main
import (
"fmt"
"math/rand"
"time"
)
func main() {
rand.Seed(time.Now().UnixNano())
x := []int{1, 3, 5, 7, 9}
y := []int{2, 4, 6, 8, 10}
median := findMedian(x, y)
fmt.Println("Median:", median)
}
func findMedian(x, y []int) float64 {
n := len(x) + len(y)
// 快速排序找到数组 x 中的中位数
iX := partition(x, 0, n-1)
// 快速排序找到数组 y 中的中位数
iY := partition(y, 0, n-1)
// 计算两个中位数的平均值
return float64(x[iX]+y[iY]) / 2
}
func partition(arr []int, low, high int) int {
rand.Shuffle(len(arr), func(i, j int) { arr[i], arr[j] = arr[j], arr[i] })
pivot := arr[high]
i := low - 1
for j := low; j < high; j++ {
if arr[j] <= pivot {
i++
arr[i], arr[j] = arr[j], arr[i]
}
}
arr[i+1], arr[high] = arr[high], arr[i+1]
return i + 1
}

这个程序首先对数组 x 和 y 进行快速排序找到各自的中位数,然后将两个中位数相加并除以 2 得到最终的中位数。为了降低时间复杂度,我们在每次排序时都随机选取一个元素作为基准值(pivot)。

通义千问:

这个问题可以通过合并两个有序数组并找到其中位数来解决。以下是一个使用Go语言实现的示例:

package main

import (
"fmt"
"sort"
) func findMedianSortedArrays(nums1 []int, nums2 []int) float64 {
if len(nums1) > len(nums2) {
nums1, nums2 = nums2, nums1
} nums := make([]int, 0, len(nums1)+len(nums2))
nums = append(nums, nums1...)
nums = append(nums, nums2...) sort.Ints(nums) if len(nums)%2 == 0 {
return float64(nums[len(nums)/2-1]+nums[len(nums)/2]) / 2.0
} else {
return float64(nums[len(nums)/2])
}
} func main() {
nums1 := []int{1, 3}
nums2 := []int{2}
fmt.Println(findMedianSortedArrays(nums1, nums2)) // Output: 2 nums1 = []int{1, 2}
nums2 = []int{3, 4}
fmt.Println(findMedianSortedArrays(nums1, nums2)) // Output: 2.5
}

这个算法首先检查两个数组的长度,如果第一个数组较短,就交换两个数组。然后,它将两个数组合并到一个新的数组中,并对这个数组进行排序。最后,它检查数组的长度是否为偶数,如果是,就返回中间两个元素的平均值,否则就返回中间的元素。

这个算法的时间复杂度为O((m+n)log(m+n)),其中m和n分别是两个数组的长度。但是,由于我们只关心中位数,所以我们实际上只需要找到数组的中间元素,这可以在O(log(m+n))的时间内完成。

天工:

可以使用类似于快速选择算法的方法来解决这个问题。具体来说,可以通过以下步骤找到数组 X 和 Y 中所有 2n 个元素的中位数:

  1. 将数组 X 和 Y 合并成一个新的数组 Z,其中 Z[k] = X[k],k = 1, 2, ..., n,Z[k] = Y[k-n],k = n+1, n+2, ..., 2n。

  2. 使用快速选择算法找到数组 Z 中的中位数,时间复杂度为 O(lgn)。

  3. 根据中位数的位置可以确定数组 X 和 Y 中的中位数。如果中位数在数组 X 中,则数组 X 和 Y 的中位数相同;否则,数组 Y 中的中位数更大。

具体实现可以参考以下代码:

func findMedianSortedArrays(X, Y []int) float64 {
n := len(X)
m := len(Y)
if n > m {
X, Y = Y, X
n, m = m, n
}
Z := make([]int, 2*n)
copy(Z, X)
copy(Z[n:], Y)
medianIndex := quickSelect(Z, n, 2*n-1)
if medianIndex == n {
return float64(X[n-1])
} else if medianIndex == n+m {
return float64(Y[m-1])
} else {
return float64(Z[medianIndex])
}
} func quickSelect(arr []int, left, right int) int {
if left == right {
return left
}
pivot := arr[(left+right)/2]
i, j := left,right
for i < j {
for arr[i] <> pivot {
i++
}
for j > i && arr[j] == pivot {
j--
}
if i < j {
arr[i], arr[j] = arr[j], arr[i]
i++
j--
}
else if i == j {
return j
}
}
return j
}

该算法的时间复杂度为 O(lgn),空间复杂度为 O(n)。

chatgpt:

可以使用类似于归并排序的思想来解决这个问题。

首先,我们可以找出X和Y的中位数候选集合,即分别找出X和Y中位置为n和n+1的元素。

这两个元素的下标分别为m1 = (n+1)/2 和 m2 = n/2,可以确定这两个位置元素 X[m1] <= X[m2] 和 Y[m1] <= Y[m2]。

然后,我们可以根据X和Y的中位数候选集合来确定中位数。

如果 X[m2] < Y[m1] ,则中位数一定在X的后半部分和Y的前半部分。因此,我们可以将X[m1:n]和Y[1:m1]作为新的候选集合来进行下一轮迭代。

如果 Y[m2] < X[m1] ,则中位数一定在Y的后半部分和X的前半部分。因此,我们可以将Y[m1:n]和X[1:m1]作为新的候选集合来进行下一轮迭代。

如果 X[m2] = Y[m1] 或 X[m2] = Y[m1],则中位数一定是 X[m2] 或 Y[m1]。可以直接返回其中一个作为中位数。

重复以上步骤,直到找到中位数或候选集合中只剩下一个元素为止。

以下是使用Go语言实现的示例代码:

func findMedian(X []int, Y []int) float64 {
n := len(X)
m1 := n / 2
m2 := (n + 1) / 2 for m1 > 0 && m1 < n {
if X[m1] <= Y[m2] && Y[m1] <= X[m2] {
// 找到中位数
if (n+n)%2 == 0 {
return float64((max(X[m1], Y[m1]) + min(X[m2], Y[m2])) / 2)
} else {
return float64(min(X[m2], Y[m2]))
}
} else if X[m1] > Y[m2] {
// 中位数在X的前半部分和Y的后半部分
n = m1
m1 = n / 2
m2 = (n + 1) / 2
} else {
// 中位数在Y的前半部分和X的后半部分
n = m1
m1 = (n + 1) / 2
m2 = n / 2
}
} // 只剩下一个元素时,返回该元素作为中位数
if m1 == 0 {
return float64(min(X[m2], Y[m2]))
} else {
return float64(max(X[m1], Y[m1]))
}
} func max(a, b int) int {
if a > b {
return a
} else {
return b
}
} func min(a, b int) int {
if a < b {
return a
} else {
return b
}
}

以上代码中,findMedian 函数接受两个有序数组 X 和 Y,并返回它们的中位数。其中,max 和 min 函数分别为获取最大值和最小值的辅助函数。

由于每次迭代都将候选集合的大小减半,因此总的时间复杂度为O(log n)。

文心一言 VS 讯飞星火 VS chatgpt (102)-- 算法导论9.3 8题的更多相关文章

  1. 【对比】文心一言对飚ChatGPT实操对比体验

    前言 缘由 百度[文心一言]体验申请通过 本狗中午干饭时,天降短信,告知可以体验文心一言,苦等一个月的实操终于到来.心中这好奇的对比心理油然而生,到底是老美的[ChatGPT]厉害,还是咱度娘的[文心 ...

  2. 【个人首测】百度文心一言 VS ChatGPT GPT-4

    昨天我写了一篇文章GPT-4牛是牛,但这几天先别急,文中我测试了用GPT-4回答ChatGPT 3.5 和 Notion AI的问题,大家期待的图片输入也没有出现. 昨天下午百度发布了文心一言,对标C ...

  3. 文心一言,通营销之学,成一家之言,百度人工智能AI大数据模型文心一言Python3.10接入

    "文心"取自<文心雕龙>一书的开篇,作者刘勰在书中引述了一个古代典故:春秋时期,鲁国有一位名叫孔文子的大夫,他在学问上非常有造诣,但是他的儿子却不学无术,孔文子非常痛心 ...

  4. 获取了文心一言的内测及与其ChatGPT、GPT-4 对比结果

    百度在3月16日召开了关于文心一言(知识增强大语言模型)的发布会,但是会上并没现场展示demo.如果要测试的文心一言 也要获取邀请码,才能进行测试的. 我这边通过预约得到了邀请码,大概是在3月17日晚 ...

  5. 百度生成式AI产品文心一言邀你体验AI创作新奇迹:百度CEO李彦宏详细透露三大产业将会带来机遇(文末附文心一言个人用户体验测试邀请码获取方法,亲测有效)

    目录 中国版ChatGPT上线发布 强大中文理解能力 智能文学创作.商业文案创作 图片.视频智能生成 中国生成式AI三大产业机会 新型云计算公司 行业模型精调公司 应用服务提供商 总结 获取文心一言邀 ...

  6. 阿里版ChatGPT:通义千问pk文心一言

    随着 ChatGPT 热潮卷起来,百度发布了文心一言.Google 发布了 Bard,「阿里云」官方终于也宣布了,旗下的 AI 大模型"通义千问"正式开启测试! 申请地址:http ...

  7. 基于讯飞语音API应用开发之——离线词典构建

    最近实习在做一个跟语音相关的项目,就在度娘上搜索了很多关于语音的API,顺藤摸瓜找到了科大讯飞,虽然度娘自家也有语音识别.语义理解这块,但感觉应该不是很好用,毕竟之前用过百度地图的API,有问题也找不 ...

  8. android用讯飞实现TTS语音合成 实现中文版

    Android系统从1.6版本开始就支持TTS(Text-To-Speech),即语音合成.但是android系统默认的TTS引擎:Pic TTS不支持中文.所以我们得安装自己的TTS引擎和语音包. ...

  9. android讯飞语音开发常遇到的问题

    场景:android项目中共使用了3个语音组件:在线语音听写.离线语音合成.离线语音识别 11208:遇到这个错误,授权应用失败,先检查装机量(3台测试权限),以及appid的申请时间(35天期限), ...

  10. 初探机器学习之使用讯飞TTS服务实现在线语音合成

    最近在调研使用各个云平台提供的AI服务,有个语音合成的需求因此就使用了一下科大讯飞的TTS服务,也用.NET Core写了一个小示例,下面就是这个小示例及其相关背景知识的介绍. 一.什么是语音合成(T ...

随机推荐

  1. Win10安装cuda11.0+cudnn8.0(这是配套的)

    首先你要知道你的电脑显卡能支持的cuda最大版本: 如下下图所示,支持最大版本为cuda11.0.228版本! 一.下载 Win10 64 位 下载cudnn8.0 链接:https://pan.ba ...

  2. 怎么利用大厂的API将大段音频转成文本

    日常办公中,我们经常要开会和写会议纪要.传统模式下,我们需要非常认真地听会议中每一句话,记下自己认为的核心的话,并在会后经过多次修改形成会议纪要.现在,聪明人已 经不那么干了,借助几百块的讯飞录音笔, ...

  3. Windows11右键菜单修改为Win10模式的方法

    Windows11右键菜单修改为Win10模式的方法 自述: 更新win11后看着鼠标右键的菜单有些不太舒服,索性就改回了win10的右键菜单的样式 , 下面开始进行操作 第一步 首先以管理员方式打开 ...

  4. 国标GB28181协议客户端开发(四)实时视频数据传输

    国标GB28181协议客户端开发(四)实时视频数据传输 本文是<国标GB28181协议设备端开发>系列的第四篇,介绍了实时视频数据传输的过程.通过解读INVITE报文中的SDP信息,读取和 ...

  5. 【Spring boot】 @Value注解

    一.不通过配置文件的注入属性 1.1 注入普通字符串 直接附在属性名上,在 Bean 初始化时,会赋初始值 @Value("normal") private String norm ...

  6. Hexo博客yilia主题文章添加目录

    参考文章 添加目录的文章有一些是自己添加css文件和修主题配置 作者也更新了文章大体目录的功能 打开配置文件themes/yilia/_config.yml 你可以选择toc设置为1 或者2 toc: ...

  7. 用 Golang 从0到1实现一个高性能的 Worker Pool(一) - 每天5分钟玩转 GPT 编程系列(3)

    目录 1. 概述 2. 设计 2.1 让 GPT-4 给出功能点 2.2 自己总结需求,再给 GPT 派活 3. 实现 3.1 你先随意发挥 3.2 你得让 Worker 跑起来呀 3.3 你说说 P ...

  8. 最为常用的Laravel操作(2)-路由

    基本路由 // 接收一个 URI 和一个闭包 Route::get('hello', function () { return 'Hello, Laravel'; }); // 支持的路由方法 Rou ...

  9. Unity UGUI的VerticalLayoutGroup(垂直布局)组件的介绍及使用

    Unity UGUI的VerticalLayoutGroup(垂直布局)组件的介绍及使用 1. 什么是VerticalLayoutGroup组件? VerticalLayoutGroup是Unity ...

  10. TodoList - 开源研究系列文章

    接着上次的代码,整理出一个待办列表的程序,比较简单易用,读者可自行修改成自己需要的程序. 1.        项目目录: 目录见下图,对代码进行了划分,比较简单.主处理类在Helper目录里. 2.  ...