CNN --Inception Module
Smiling & Weeping
---- 祝你想我
在平静的湖面
不止在失控的雪山之前
说明:Inception Module
1. 卷积核超参数选择困难,自动找到卷积的最佳组合
2. 1x1卷积核,不同通道的信息融合。使用1x1卷积核可以调节通道数量,可以显著降低计算量
3. Inception Module由四个分支组成,要分清哪些是在init里定义的,那些是在forward里调用的。4个分支在dim=1(channels)上进行concatenate

1 import torch
2 import torch.nn as nn
3 from torchvision import transforms
4 from torchvision import datasets
5 from torch.utils.data import DataLoader
6 import torch.nn.functional as F
7 import torch.optim as optim
8 import matplotlib.pyplot as plt
9
10 batch_size = 64
11 # 归一化,均值和方差
12 transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
13
14 train_dataset = datasets.MNIST(root='../dataset/mnist', train=True, download=True, transform=transform)
15 train_loader = DataLoader(train_dataset, shuffle=True,batch_size=batch_size)
16 test_dataset = datasets.MNIST(root='../dataset/mnist', train=False, download=True, transform=transform)
17 test_loader = DataLoader(test_dataset, shuffle=True, batch_size=batch_size)
18
19 # design model using class
20 class InceptionA(nn.Module):
21 def __init__(self, in_channels):
22 super(InceptionA, self).__init__()
23 self.branch1x1 = nn.Conv2d(in_channels, 16, kernel_size=1)
24
25 self.branch5x5_1 = nn.Conv2d(in_channels, 16, kernel_size=1)
26 self.branch5x5_2 = nn.Conv2d(16, 24, kernel_size=5, padding=2)
27
28 self.branch3x3_1 = nn.Conv2d(in_channels, 16, kernel_size=1)
29 self.branch3x3_2 = nn.Conv2d(16, 24, kernel_size=3, padding=1)
30 self.branch3x3_3 = nn.Conv2d(24, 24, kernel_size=3, padding=1)
31
32 self.branch_pool = nn.Conv2d(in_channels, 24, kernel_size=1)
33
34 def forward(self, x):
35 branch1x1 = self.branch1x1(x)
36
37 branch5x5 = self.branch5x5_1(x)
38 branch5x5 = self.branch5x5_2(branch5x5)
39
40 branch3x3 = self.branch3x3_1(x)
41 branch3x3 = self.branch3x3_2(branch3x3)
42 branch3x3 = self.branch3x3_3(branch3x3)
43
44 branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)
45 branch_pool = self.branch_pool(branch_pool)
46
47 outputs = [branch1x1, branch5x5, branch3x3, branch_pool]
48 return torch.cat(outputs, dim=1)
49
50 class Net(nn.Module):
51 def __init__(self):
52 super(Net, self).__init__()
53 self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
54 self.conv2 = nn.Conv2d(88, 20, kernel_size=5) # 88=24*3+16
55
56 self.incep1 = InceptionA(in_channels=10) # conv1 中的10对应
57 self.incep2 = InceptionA(in_channels=20) # conv2 中的20对应
58
59 self.mp = nn.MaxPool2d(2)
60 self.fc = nn.Linear(1408, 10)
61
62 def forward(self, x):
63 in_size = x.size(0)
64 x = F.relu(self.mp(self.conv1(x)))
65 x = self.incep1(x)
66 x = F.relu(self.mp(self.conv2(x)))
67 x = self.incep2(x)
68 x = x.view(in_size, -1)
69 x = self.fc(x)
70
71 return x
72
73 model = Net()
74 device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
75 model.to(device)
76
77 # 定义优化器 和 损失
78 criterion = torch.nn.CrossEntropyLoss()
79 optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
80 # print(model.parameters())
81
82 def train(epoch):
83 run_loss = 0.0
84 for batch_idx, data in enumerate(train_loader, 0):
85 inputs, target = data
86 inputs, target = inputs.to(device), target.to(device)
87 optimizer.zero_grad()
88
89 outputs = model(inputs)
90 loss = criterion(outputs, target)
91 loss.backward()
92 optimizer.step()
93
94 run_loss += loss.item()
95 if batch_idx%300 == 299:
96 print('[%d %5d] loss: %.3f' % (epoch+1, batch_idx+1, run_loss/300))
97 run_loss = 0.0
98
99 def test():
100 correct = 0
101 total = 0
102 with torch.no_grad():
103 for data in test_loader:
104 images, labels = data
105 images, labels = images.to(device), labels.to(device)
106 outputs = model(images)
107 _, prediction = torch.max(outputs.data, dim=1)
108 total += labels.size(0)
109 correct += (prediction == labels).sum().item()
110 print('accuracy on test set: %d %%' % (100*correct/total))
111 return correct/total
112
113 epoch_list = []
114 acc_list = []
115 for epoch in range(10):
116 train(epoch)
117 acc = test()
118 epoch_list.append(epoch)
119 acc_list.append(acc)
120
121 plt.plot(epoch_list, acc_list)
122 plt.ylabel('accuracy')
123 plt.xlabel('epoch')
124 plt.show()
125
126 class DatasetSubmissionMNIST(torch.utils.data.Dataset):
127 def __init__(self, file_path, transform=None):
128 self.data = pd.read_csv(file_path)
129 self.transform = transform
130
131 def __len__(self):
132 return len(self.data)
133
134 def __getitem__(self, index):
135 image = self.data.iloc[index].values.astype(np.uint8).reshape((28, 28, 1))
136
137
138 if self.transform is not None:
139 image = self.transform(image)
140
141 return image
142
143 transform = transforms.Compose([
144 transforms.ToPILImage(),
145 transforms.ToTensor(),
146 transforms.Normalize(mean=(0.5,), std=(0.5,))
147 ])
148
149 submissionset = DatasetSubmissionMNIST('/kaggle/input/digit-recognizer/test.csv', transform=transform)
150 submissionloader = torch.utils.data.DataLoader(submissionset, batch_size=batch_size, shuffle=False)
151
152 submission = [['ImageId', 'Label']]
153
154 with torch.no_grad():
155 model.eval()
156 image_id = 1
157
158 for images in submissionloader:
159 images = images.cuda()
160 log_ps = model(images)
161 ps = torch.exp(log_ps)
162 top_p, top_class = ps.topk(1, dim=1)
163
164 for prediction in top_class:
165 submission.append([image_id, prediction.item()])
166 image_id += 1
167
168 print(len(submission) - 1)
169 import csv
170
171 with open('submission.csv', 'w') as submissionFile:
172 writer = csv.writer(submissionFile)
173 writer.writerows(submission)
174
175 print('Submission Complete!')
176 # submission.to_csv('/kaggle/working/submission.csv', index=False)
文章到此结束,我们下次再见
-- 大地的芳香来自每一株野草的献祭
CNN --Inception Module的更多相关文章
- Tutorial on GoogleNet based image classification --- focus on Inception module and save/load models
Tutorial on GoogleNet based image classification 2018-06-26 15:50:29 本文旨在通过案例来学习 GoogleNet 及其 Incep ...
- 【深度学习】Pytorch 学习笔记
目录 Pytorch Leture 05: Linear Rregression in the Pytorch Way Logistic Regression 逻辑回归 - 二分类 Lecture07 ...
- 【转】CNN卷积神经网络_ GoogLeNet 之 Inception(V1-V4)
http://blog.csdn.net/diamonjoy_zone/article/details/70576775 参考: 1. Inception[V1]: Going Deeper with ...
- CNN卷积神经网络_深度残差网络 ResNet——解决神经网络过深反而引起误差增加的根本问题,Highway NetWork 则允许保留一定比例的原始输入 x。(这种思想在inception模型也有,例如卷积是concat并行,而不是串行)这样前面一层的信息,有一定比例可以不经过矩阵乘法和非线性变换,直接传输到下一层,仿佛一条信息高速公路,因此得名Highway Network
from:https://blog.csdn.net/diamonjoy_zone/article/details/70904212 环境:Win8.1 TensorFlow1.0.1 软件:Anac ...
- AI:IPPR的数学表示-CNN结构进化(Alex、ZF、Inception、Res、InceptionRes)
前言: 文章:CNN的结构分析-------: 文章:历年ImageNet冠军模型网络结构解析-------: 文章:GoogleLeNet系列解读-------: 文章:DNN结构演进Histor ...
- 经典分类CNN模型系列其五:Inception v2与Inception v3
经典分类CNN模型系列其五:Inception v2与Inception v3 介绍 Inception v2与Inception v3被作者放在了一篇paper里面,因此我们也作为一篇blog来对其 ...
- 【机器学习】彻底搞懂CNN
之前通过各种博客视频学习CNN,总是对参数啊原理啊什么的懵懵懂懂..这次上课终于弄明白了,O(∩_∩)O~ 上世纪科学家们发现了几个视觉神经特点,视神经具有局部感受眼,一整张图的识别由多个局部识别点构 ...
- AndrewNG Deep learning课程笔记 - CNN
参考, An Intuitive Explanation of Convolutional Neural Networks http://www.hackcv.com/index.php/archiv ...
- 图像分类(三)GoogLenet Inception_v3:Rethinking the Inception Architecture for Computer Vision
Inception V3网络(注意,不是module了,而是network,包含多种Inception modules)主要是在V2基础上进行的改进,特点如下: 将滤波器尺寸(Filter Size) ...
- 详解卷积神经网络(CNN)
详解卷积神经网络(CNN) 详解卷积神经网络CNN 概揽 Layers used to build ConvNets 卷积层Convolutional layer 池化层Pooling Layer 全 ...
随机推荐
- 多任务学习模型之ESMM介绍与实现
简介:本文介绍的是阿里巴巴团队发表在 SIGIR'2018 的论文<Entire Space Multi-Task Model: An Effective Approach for Estima ...
- KubeVela 1.1 发布,开启混合环境应用交付新里程碑
简介: KubeVela 作为一个开箱即用.面向现代微服务架构的应用交付与管理平台,今天正式发布了 1.1 版本,以更加用户友好和完善的功能集,开启了"让混合环境应用交付更加简单高效&qu ...
- WPF 基于 Azure 的认知服务 情绪分析 语言检测 关键短语提取
本文主要是来安利大家基于 Azure 的认知服务,主要是文本认知服务,可以做到分析输入文本的情绪,以及判断当前输入文本所属语言等功能 本文分为两个部分 ,一个就是在 Azure 上的配置,另一个就是 ...
- linux Makefile 如何将生成的 .o 文件放到指定文件夹
一.Makefile文件 为了方便分析,直接上文件,Makefile 文件中的内容如下所示: # # Makefile # 编译的.o文件和.c文件在同一路径下 # $(info "star ...
- Solution Set - LCT
A[洛谷P3690]维护一个森林,支持询问路径xor和,连边(已连通则忽略),删边(无边则忽略),改变点权. B[洛谷P3203]\(n\)个装置编号为\(0,...,n-1\),从\(i\)可以一步 ...
- dotnet build error CS5001: Program does not contain a static 'Main' method suitable for an entry point
前言 Docker环境编译.Net6项目,出现诡异的CS5001 Program does not contain a static 'Main' method suitable for an ent ...
- sql 查找是否存在的记录
场景:根据条件从数据库表中查询 『有』与『没有』,只有两种状态 方法1: SELECT count(*) FROM table WHERE a = 1 方法2: SELECT 1 FROM table ...
- IceRPC之服务器地址与TLS的安全性->快乐的RPC
作者引言 很高兴啊,我们来到了IceRPC之服务器地址与TLS的安全性->快乐的RPC, 基础引导,让自已不在迷茫,快乐的畅游世界. 服务器地址 ServerAddress 了解服务器地址的概念 ...
- 扩展Unity编辑器顶部Toolbar,增加自定义按钮
游戏需要增加几种启动模式,要在编辑器顶部Toolbar处增加几个按钮:进行下扩展. 这部分Unity没有直接提供接口,需通过反射实现.看了下有一个开源库: https://github.com/mar ...
- Advanced .Net Debugging 8:线程同步
一.介绍 这是我的<Advanced .Net Debugging>这个系列的第八篇文章.这篇文章的内容是原书的第二部分的[调试实战]的第六章[同步].我们经常写一些多线程的应用程序,写的 ...