Smiling & Weeping

                  ---- 祝你想我

                    在平静的湖面

                   不止在失控的雪山之前

说明:Inception Module

1. 卷积核超参数选择困难,自动找到卷积的最佳组合

2. 1x1卷积核,不同通道的信息融合。使用1x1卷积核可以调节通道数量,可以显著降低计算量

3. Inception Module由四个分支组成,要分清哪些是在init里定义的,那些是在forward里调用的。4个分支在dim=1(channels)上进行concatenate

  1 import torch
2 import torch.nn as nn
3 from torchvision import transforms
4 from torchvision import datasets
5 from torch.utils.data import DataLoader
6 import torch.nn.functional as F
7 import torch.optim as optim
8 import matplotlib.pyplot as plt
9
10 batch_size = 64
11 # 归一化,均值和方差
12 transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
13
14 train_dataset = datasets.MNIST(root='../dataset/mnist', train=True, download=True, transform=transform)
15 train_loader = DataLoader(train_dataset, shuffle=True,batch_size=batch_size)
16 test_dataset = datasets.MNIST(root='../dataset/mnist', train=False, download=True, transform=transform)
17 test_loader = DataLoader(test_dataset, shuffle=True, batch_size=batch_size)
18
19 # design model using class
20 class InceptionA(nn.Module):
21 def __init__(self, in_channels):
22 super(InceptionA, self).__init__()
23 self.branch1x1 = nn.Conv2d(in_channels, 16, kernel_size=1)
24
25 self.branch5x5_1 = nn.Conv2d(in_channels, 16, kernel_size=1)
26 self.branch5x5_2 = nn.Conv2d(16, 24, kernel_size=5, padding=2)
27
28 self.branch3x3_1 = nn.Conv2d(in_channels, 16, kernel_size=1)
29 self.branch3x3_2 = nn.Conv2d(16, 24, kernel_size=3, padding=1)
30 self.branch3x3_3 = nn.Conv2d(24, 24, kernel_size=3, padding=1)
31
32 self.branch_pool = nn.Conv2d(in_channels, 24, kernel_size=1)
33
34 def forward(self, x):
35 branch1x1 = self.branch1x1(x)
36
37 branch5x5 = self.branch5x5_1(x)
38 branch5x5 = self.branch5x5_2(branch5x5)
39
40 branch3x3 = self.branch3x3_1(x)
41 branch3x3 = self.branch3x3_2(branch3x3)
42 branch3x3 = self.branch3x3_3(branch3x3)
43
44 branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)
45 branch_pool = self.branch_pool(branch_pool)
46
47 outputs = [branch1x1, branch5x5, branch3x3, branch_pool]
48 return torch.cat(outputs, dim=1)
49
50 class Net(nn.Module):
51 def __init__(self):
52 super(Net, self).__init__()
53 self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
54 self.conv2 = nn.Conv2d(88, 20, kernel_size=5) # 88=24*3+16
55
56 self.incep1 = InceptionA(in_channels=10) # conv1 中的10对应
57 self.incep2 = InceptionA(in_channels=20) # conv2 中的20对应
58
59 self.mp = nn.MaxPool2d(2)
60 self.fc = nn.Linear(1408, 10)
61
62 def forward(self, x):
63 in_size = x.size(0)
64 x = F.relu(self.mp(self.conv1(x)))
65 x = self.incep1(x)
66 x = F.relu(self.mp(self.conv2(x)))
67 x = self.incep2(x)
68 x = x.view(in_size, -1)
69 x = self.fc(x)
70
71 return x
72
73 model = Net()
74 device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
75 model.to(device)
76
77 # 定义优化器 和 损失
78 criterion = torch.nn.CrossEntropyLoss()
79 optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
80 # print(model.parameters())
81
82 def train(epoch):
83 run_loss = 0.0
84 for batch_idx, data in enumerate(train_loader, 0):
85 inputs, target = data
86 inputs, target = inputs.to(device), target.to(device)
87 optimizer.zero_grad()
88
89 outputs = model(inputs)
90 loss = criterion(outputs, target)
91 loss.backward()
92 optimizer.step()
93
94 run_loss += loss.item()
95 if batch_idx%300 == 299:
96 print('[%d %5d] loss: %.3f' % (epoch+1, batch_idx+1, run_loss/300))
97 run_loss = 0.0
98
99 def test():
100 correct = 0
101 total = 0
102 with torch.no_grad():
103 for data in test_loader:
104 images, labels = data
105 images, labels = images.to(device), labels.to(device)
106 outputs = model(images)
107 _, prediction = torch.max(outputs.data, dim=1)
108 total += labels.size(0)
109 correct += (prediction == labels).sum().item()
110 print('accuracy on test set: %d %%' % (100*correct/total))
111 return correct/total
112
113 epoch_list = []
114 acc_list = []
115 for epoch in range(10):
116 train(epoch)
117 acc = test()
118 epoch_list.append(epoch)
119 acc_list.append(acc)
120
121 plt.plot(epoch_list, acc_list)
122 plt.ylabel('accuracy')
123 plt.xlabel('epoch')
124 plt.show()
125
126 class DatasetSubmissionMNIST(torch.utils.data.Dataset):
127 def __init__(self, file_path, transform=None):
128 self.data = pd.read_csv(file_path)
129 self.transform = transform
130
131 def __len__(self):
132 return len(self.data)
133
134 def __getitem__(self, index):
135 image = self.data.iloc[index].values.astype(np.uint8).reshape((28, 28, 1))
136
137
138 if self.transform is not None:
139 image = self.transform(image)
140
141 return image
142
143 transform = transforms.Compose([
144 transforms.ToPILImage(),
145 transforms.ToTensor(),
146 transforms.Normalize(mean=(0.5,), std=(0.5,))
147 ])
148
149 submissionset = DatasetSubmissionMNIST('/kaggle/input/digit-recognizer/test.csv', transform=transform)
150 submissionloader = torch.utils.data.DataLoader(submissionset, batch_size=batch_size, shuffle=False)
151
152 submission = [['ImageId', 'Label']]
153
154 with torch.no_grad():
155 model.eval()
156 image_id = 1
157
158 for images in submissionloader:
159 images = images.cuda()
160 log_ps = model(images)
161 ps = torch.exp(log_ps)
162 top_p, top_class = ps.topk(1, dim=1)
163
164 for prediction in top_class:
165 submission.append([image_id, prediction.item()])
166 image_id += 1
167
168 print(len(submission) - 1)
169 import csv
170
171 with open('submission.csv', 'w') as submissionFile:
172 writer = csv.writer(submissionFile)
173 writer.writerows(submission)
174
175 print('Submission Complete!')
176 # submission.to_csv('/kaggle/working/submission.csv', index=False)

文章到此结束,我们下次再见

-- 大地的芳香来自每一株野草的献祭

CNN --Inception Module的更多相关文章

  1. Tutorial on GoogleNet based image classification --- focus on Inception module and save/load models

    Tutorial on GoogleNet based image classification  2018-06-26 15:50:29 本文旨在通过案例来学习 GoogleNet 及其 Incep ...

  2. 【深度学习】Pytorch 学习笔记

    目录 Pytorch Leture 05: Linear Rregression in the Pytorch Way Logistic Regression 逻辑回归 - 二分类 Lecture07 ...

  3. 【转】CNN卷积神经网络_ GoogLeNet 之 Inception(V1-V4)

    http://blog.csdn.net/diamonjoy_zone/article/details/70576775 参考: 1. Inception[V1]: Going Deeper with ...

  4. CNN卷积神经网络_深度残差网络 ResNet——解决神经网络过深反而引起误差增加的根本问题,Highway NetWork 则允许保留一定比例的原始输入 x。(这种思想在inception模型也有,例如卷积是concat并行,而不是串行)这样前面一层的信息,有一定比例可以不经过矩阵乘法和非线性变换,直接传输到下一层,仿佛一条信息高速公路,因此得名Highway Network

    from:https://blog.csdn.net/diamonjoy_zone/article/details/70904212 环境:Win8.1 TensorFlow1.0.1 软件:Anac ...

  5. AI:IPPR的数学表示-CNN结构进化(Alex、ZF、Inception、Res、InceptionRes)

    前言: 文章:CNN的结构分析-------:  文章:历年ImageNet冠军模型网络结构解析-------: 文章:GoogleLeNet系列解读-------: 文章:DNN结构演进Histor ...

  6. 经典分类CNN模型系列其五:Inception v2与Inception v3

    经典分类CNN模型系列其五:Inception v2与Inception v3 介绍 Inception v2与Inception v3被作者放在了一篇paper里面,因此我们也作为一篇blog来对其 ...

  7. 【机器学习】彻底搞懂CNN

    之前通过各种博客视频学习CNN,总是对参数啊原理啊什么的懵懵懂懂..这次上课终于弄明白了,O(∩_∩)O~ 上世纪科学家们发现了几个视觉神经特点,视神经具有局部感受眼,一整张图的识别由多个局部识别点构 ...

  8. AndrewNG Deep learning课程笔记 - CNN

    参考, An Intuitive Explanation of Convolutional Neural Networks http://www.hackcv.com/index.php/archiv ...

  9. 图像分类(三)GoogLenet Inception_v3:Rethinking the Inception Architecture for Computer Vision

    Inception V3网络(注意,不是module了,而是network,包含多种Inception modules)主要是在V2基础上进行的改进,特点如下: 将滤波器尺寸(Filter Size) ...

  10. 详解卷积神经网络(CNN)

    详解卷积神经网络(CNN) 详解卷积神经网络CNN 概揽 Layers used to build ConvNets 卷积层Convolutional layer 池化层Pooling Layer 全 ...

随机推荐

  1. Serverless 工程实践 | 快速搭建 Kubeless 平台

    ​简介: Kubeless 是基于 Kubernetes 的原生无服务器框架.其允许用户部署少量的代码(函数),而无须担心底层架构. 快速搭建 Kubeless 平台 Kubeless 简介 Kube ...

  2. 获国际架构顶会ATC2021最佳论文!Fuxi2.0去中心化的调度架构详解

    简介: 近日,在国际体系架构顶会USENIX ATC2021上,阿里云飞天伏羲团队与香港中文大学合作的一篇论文<Scaling Large Production Clusters with Pa ...

  3. 延迟绑定与retdlresolve

    延迟绑定与retdlresolve 我们以前在ret2libc的时候,我们泄露的libc地址是通过延迟绑定实现的,我们知道,在调用libc里面的函数时候,它会先通过plt表和gor表绑定到,函数真实地 ...

  4. 2024 年最值得推荐的 7 个 Vue3 组件库

    你好,我是 Kagol. Vue 是一款易学易用,性能出色,适用场景丰富的渐进式 JavaScript 框架,深受广大开发者的喜爱,Vue3 更是推出了 Composition API,让逻辑复用更友 ...

  5. 2018-12-26-WPF-开启-ScrollViewer-的触摸滚动

    title author date CreateTime categories WPF 开启 ScrollViewer 的触摸滚动 lindexi 2018-12-26 14:24:26 +0800 ...

  6. vue解决二级路由redirect(默认路由)不传参的问题

    场景: pageA----pageB(pageB包含三个二级路由) 默认进入pageB时进入第一个页面的路由,之后点击左侧按钮,分别进入其他二级路由 原router.js写法: //应用信息      ...

  7. Oracle、达梦:生成32位字符串(ID)

    15.生成32位字符串 达梦.oracle 函数:sys_guid().newid() 转小写LOWER(char) select rawtohex(sys_guid()); -- 推荐使用newid ...

  8. EXCEL-统计sheet个数、统计指定单元格个数

    Excel的函数,可以直接在里面执行 1.统计sheet个数 =SHEETS() 参考:https://office.tqzw.net.cn/excel/excel/8168.html 2.统计单元格 ...

  9. C++ Grammar Focus

    一.结构体 1.基础模板 struct Node { <变量类型1> 变量名1; <变量类型2> 变量名2; ... } <定义变量名1>,<定义变量名2&g ...

  10. 命令行创建vue项目

    vue -h vue create learn-vue ❯ Manually select features 选择下面的组件(空格为选中/取消)回车确认 使用 history mode 使用node ...