Kruskal 重构树
Kruskal 重构树
是一棵二叉树,一张 \(N\) 个点的无向连通图的 Kruskal 重构树有 \(2N-1\) 个节点。
叶子节点为原图中节点,非叶子节点有点权,表示想在原图上从一边的子树内的叶子节点所对应的原图上节点走到另一边的子树内的叶子节点所对应的原图上节点所需经过的最长边的最小可能值。
建树方式:Kruskal 每次合并 \(2\) 个节点时,新开一个点,记作这 \(2\) 个节点的重构树父亲(及并查集父亲),权值为当前这条边的权值。
代码如下:
(花15分钟敲完的模板题 [NOIP2013 提高组] 货车运输)
#include <bits/stdc++.h>
using namespace std;
const int MAXN=1e6+50;
int N,M;
struct Edge1
{
int x,y,Len;
}E[MAXN];
struct Edge2
{
int x,y,Next;
}e[MAXN<<1];
int elast[MAXN],tot;
void Add(int x,int y)
{
tot++;
e[tot].x=x;
e[tot].y=y;
e[tot].Next=elast[x];
elast[x]=tot;
}
bool cmp(Edge1 a,Edge1 b)
{
return a.Len<b.Len;
}
int father[MAXN];
int getfather(int x)
{
if(x!=father[x])
father[x]=getfather(father[x]);
return father[x];
}
int f[MAXN][20],depth[MAXN];
int Val[MAXN];
void Kruskal()
{
for(int i=1;i<=2*N-1;i++)
{
father[i]=i;
}
sort(E+1,E+M+1,cmp);
for(int i=1;i<=M;i++)
{
int fx=getfather(E[i].x),fy=getfather(E[i].y);
if(fx!=fy)
{
N++;
father[fx]=N;
father[fy]=N;
Add(N,fx);
Add(N,fy);
Val[N]=E[i].Len;
}
}
}
void dfs(int u,int fa)
{
depth[u]=depth[fa]+1;
f[u][0]=fa;
for(int i=1;f[f[u][i-1]][i-1];i++)
{
f[u][i]=f[f[u][i-1]][i-1];
}
for(int i=elast[u];i;i=e[i].Next)
{
int v=e[i].y;
if(v==fa)
continue;
dfs(v,u);
}
}
int GetLca(int x,int y)
{
if(depth[x]<depth[y])
swap(x,y);
for(int i=19;i>=0;i--)
{
if(depth[f[x][i]]>=depth[y])
{
x=f[x][i];
}
}
if(x==y)
return x;
for(int i=19;i>=0;i--)
{
if(f[x][i]!=f[y][i])
{
x=f[x][i];
y=f[y][i];
}
}
return f[x][0];
}
int main()
{
scanf("%d%d",&N,&M);
for(int i=1;i<=M;i++)
{
scanf("%d%d%d",&E[i].x,&E[i].y,&E[i].Len);
E[i].Len=-E[i].Len;
}
Kruskal();
for(int i=N;i>=1;i--)
{
if(depth[i]==0)
dfs(i,0);
}
int Q;
scanf("%d",&Q);
while(Q--)
{
int x,y;
scanf("%d%d",&x,&y);
int Lca=GetLca(x,y);
if(Lca==0)
puts("-1");
else
printf("%d\n",-Val[Lca]);
}
}
注意到由于此题是求最大生成树,所以在输入时将边权取反,就变成了最小生成树。
都变成一棵树了,自然想怎么搞事就怎么搞事。既然 LCT 可以维护最小生成树,所以 LCT 维护 Kruksal 重构树应该也是可以的罢?
Kruskal 重构树满足父亲节点的权值不小于其子节点,所以在树上倍增这样的操作也是很常见的。
Kruskal 重构树的更多相关文章
- [bzoj 3732] Network (Kruskal重构树)
kruskal重构树 Description 给你N个点的无向图 (1 <= N <= 15,000),记为:1-N. 图中有M条边 (1 <= M <= 30,000) ,第 ...
- 【BZOJ 3732】 Network Kruskal重构树+倍增LCA
Kruskal重构树裸题, Sunshine互测的A题就是Kruskal重构树,我通过互测了解到了这个神奇的东西... 理解起来应该没什么难度吧,但是我的Peaks连WA,,, 省选估计要滚粗了TwT ...
- 【BZOJ-3545&3551】Peaks&加强版 Kruskal重构树 + 主席树 + DFS序 + 倍增
3545: [ONTAK2010]Peaks Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1202 Solved: 321[Submit][Sta ...
- BZOJ 3551: [ONTAK2010]Peaks加强版 [Kruskal重构树 dfs序 主席树]
3551: [ONTAK2010]Peaks加强版 题意:带权图,多组询问与一个点通过边权\(\le lim\)的边连通的点中点权k大值,强制在线 PoPoQQQ大爷题解传送门 说一下感受: 容易发现 ...
- bzoj 3551 kruskal重构树dfs序上的主席树
强制在线 kruskal重构树,每两点间的最大边权即为其lca的点权. 倍增找,dfs序对应区间搞主席树 #include<cstdio> #include<cstring> ...
- kruskal重构树学习笔记
\(kruskal\) 重构树学习笔记 前言 \(8102IONCC\) 中考到了,本蒟蒻不会,所以学一下. 前置知识 \(kruskal\) 求最小(大)生成树,树上求 \(lca\). 算法详 ...
- Kruskal重构树入门
这个知识点好像咕咕咕了好长了..趁还没退役赶紧补一下吧.. 讲的非常简略,十分抱歉.. 前置知识 Kruskal算法 一定的数据结构基础(如主席树) Kruskal重构树 直接bb好像不是很好讲,那就 ...
- UOJ#407. 【IOI2018】狼人 Kruskal,kruskal重构树,主席树
原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ407.html 题解 套路啊. 先按照两个节点顺序各搞一个kruskal重构树,然后问题转化成两棵krus ...
- LOJ.2865.[IOI2018]狼人(Kruskal重构树 主席树)
LOJ 洛谷 这题不就是Peaks(加强版)或者归程么..这算是\(IOI2018\)撞上\(NOI2018\)的题了? \(Kruskal\)重构树(具体是所有点按从小到大/从大到小的顺序,依次加入 ...
- 洛谷P4768 [NOI2018]归程(Kruskal重构树)
题意 直接看题目吧,不好描述 Sol 考虑暴力做法 首先预处理出从$1$到每个节点的最短路, 对于每次询问,暴力的从这个点BFS,从能走到的点里面取$min$ 考虑如何优化,这里要用到Kruskal重 ...
随机推荐
- AOP的九点核心概念和作用
AOP为Aspect Oriented Programming的缩写,意为:面向切面编程,通过预编译方式和运行期间动态代理实现程序功能的统一维护的一种技术.AOP是OOP的延续,是软件开发中的一个热点 ...
- HTTP协议初见
HTTP协议 四大特性 基于请求端响应 客户端发送请求,服务端才响应,服务端不会主动给客户端发送响应. 基于TCP/IP作用于应用层之上的协议 此协议属于应用层 无状态 服务端不会保存客户 ...
- pandas之concat链接操作
Pandas 通过 concat() 函数能够轻松地将 Series 与 DataFrame 对象组合在一起,函数的语法格式如下: pd.concat(objs,axis=0,join='outer' ...
- [MAUI]模仿微信“按住-说话”的交互实现
@ 目录 创建页面布局 创建手势控件 创建TalkBox 创建动画 拖拽物动画 按钮激活动画 TalkBox动画 Layout动画 项目地址 .NET MAUI跨平台框架包含了识别平移手势的功能,在之 ...
- Linux Socket网络编程: TCP/UDP与本地套接字
网络交互和数据传输好比打电话,socket就像电话机,是在网络编程世界中与外界进行网络通信的途径 TCP网络编程 基于服务器-客户端模型,使用套接字完成连接的建立 服务端准备连接 使用socket创建 ...
- Zabbix - 部署随笔
部署Zabbix服务端 准备机器,初始化环境 #查看IP地址 [root@Minimal ~]# ifconfig ens33 | awk 'NR==2{print $2}' 10.0.0.243 # ...
- YOLO精讲------YOLOV1
CV小白说YOLOV1 题外话: 目标检测是什么? 它是在图像中对一类或多类感兴趣的目标进行查找和分类,确定它们的类别和位置.由于各类物体有不同的外观.形状和姿态,加上成像时各种因素的干扰,目标检测一 ...
- 关于页面重定向https安全漏洞和服务器SSH加密算法漏洞
1.HTTP 严格传输安全 nginx配置 add_header Strict-Transport-Security "max-age=63072000; includeSubdomains ...
- 【踩坑】.NET异步方法不标记async,Task<int> 返回值 return default问题
在.NET中,返回类型为 Task<T> 的方法并不一定要标记为 async.这是因为 async 关键字只是用来告诉编译器该方法中包含异步操作,并且可以使用 await 和其他异步特 ...
- awk判断整除(包含小数和负数)
awk判断整除常用的方法是用内置的int或者求余数的算符% 被整数整除 输出0-100之间能被9整除的整数 使用 num/9==int(num/9) 的判断方法可以很好实现. awk 'BEGIN{ ...