FaceFusion3.0.0大抵是现在最强的AI换脸项目,分享一下如何在Win11系统,基于最新的cuda12.6配合最新的cudnn9.4本地部署FaceFusion3.0.0项目,并且搭配Tensorrt10.4,提高推理速度和效率,让甜品级显卡也能爆发生产力。

安装最新版本Cuda12.6以及Cudnn9.4

CUDA是NVIDIA公司开发的一种技术,它能让GPU像CPU一样编程,让GPU也能参与到计算中来,从而加速计算过程。你可以把它想象成一种“语言”,让程序员可以指挥GPU的“工人”们一起工作。

cuDNN则是专门为深度学习设计的“工具箱”。深度学习就像盖房子,需要很多“积木”块,比如卷积、池化等操作。cuDNN提供了这些预先优化好的“积木”,让程序员可以直接使用,而不用自己从头开始编写这些复杂的代码,从而大大提高了深度学习模型的训练和推理速度。 它就像一个经验丰富的建筑工人,能快速高效地完成盖房子的工作。

安装包可以去 Nvidia 官方网站进行下载,但是必须登录Nvidia账号,这里为大家下载好了最新的安装包:

https://pan.quark.cn/s/bc3ab3494596

首先双击 cuda_12.6.1_560.94_windows.exe 进行安装,注意不要安装到C盘,因为太占地方,建议在别的盘符建立12.6目录,然后进行安装即可。

安装成功后,运行命令进行检查:

(base) PS C:\Users\zcxey> nvcc -V
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2024 NVIDIA Corporation
Built on Wed_Aug_14_10:26:51_Pacific_Daylight_Time_2024
Cuda compilation tools, release 12.6, V12.6.68
Build cuda_12.6.r12.6/compiler.34714021_0
(base) PS C:\Users\zcxey>

可以看到显示的版本是 12.6

随后打开 cudnn-windows-x86_64-9.4.0.58_cuda12-archive 目录,把其中的 bin、include以及lib目录直接拷贝覆盖到 cuda 的安装目录即可。至此,cuda12.6和其对应的cudnn9.4就安装好了,注意版本号必须吻合。

安装Tensorrt10.4

关于Tensorrt,想象一下你训练好了一只非常聪明的狗狗(你的深度学习模型),它已经学会了识别各种猫和狗的图片。但是,这只狗狗每次识别图片都需要很长时间,效率不高。

TensorRT就像一个训练师,它能帮助你把这只狗狗训练得更加高效。它会优化狗狗的识别方法,让它能够更快更准确地识别图片,并且消耗更少的能量。 所以,用TensorRT优化后的模型,就能在你的电脑或服务器上更快地进行推理(识别图片),从而节省时间和资源。

Tensorrt主要针对的是已经训练好的模型,而不是训练模型本身。 它就像一个专业的优化器,让你的模型在实际应用中跑得更快更省力。

打开 TensorRT-10.4.0.26 目录,把 lib 目录下的所有动态库 dll 文件全部拷贝到 cuda12.6 安装目录的 bin目录下即可:

Directory of D:\12.6\bin  

2024/09/27  11:08    <DIR>          .
2024/09/27 10:48 <DIR> ..
2024/08/15 02:14 228,352 bin2c.exe
2024/08/15 02:01 66 compute-sanitizer.bat
2024/09/27 10:48 <DIR> crt
2024/08/15 02:11 202,752 cu++filt.exe
2024/08/15 02:34 100,806,656 cublas64_12.dll
2024/08/15 02:34 510,903,296 cublasLt64_12.dll
2024/08/15 02:14 7,739,904 cudafe++.exe
2024/08/15 02:11 556,544 cudart64_12.dll
2023/11/30 16:26 288,296 cudnn64_8.dll
2024/09/01 04:24 265,272 cudnn64_9.dll
2024/09/01 04:24 243,945,512 cudnn_adv64_9.dll
2023/11/30 16:26 125,217,320 cudnn_adv_infer64_8.dll
2023/11/30 16:26 116,558,888 cudnn_adv_train64_8.dll
2024/09/01 04:24 4,002,872 cudnn_cnn64_9.dll
2023/11/30 16:26 582,690,344 cudnn_cnn_infer64_8.dll
2023/11/30 16:26 122,242,104 cudnn_cnn_train64_8.dll
2024/09/01 04:24 432,804,904 cudnn_engines_precompiled64_9.dll
2024/09/01 04:24 16,297,000 cudnn_engines_runtime_compiled64_9.dll
2024/09/01 04:25 2,063,400 cudnn_graph64_9.dll
2024/09/01 04:25 44,681,784 cudnn_heuristic64_9.dll
2024/09/01 04:25 107,492,904 cudnn_ops64_9.dll
2023/11/30 16:26 89,759,272 cudnn_ops_infer64_8.dll
2023/11/30 16:26 70,162,472 cudnn_ops_train64_8.dll
2024/08/15 03:03 275,258,368 cufft64_11.dll
2024/08/15 03:03 163,328 cufftw64_11.dll
2024/08/15 02:45 1,513,984 cuinj64_126.dll
2024/08/15 02:11 11,713,024 cuobjdump.exe
2024/08/15 02:25 63,279,104 curand64_10.dll
2024/08/15 04:12 116,768,256 cusolver64_11.dll
2024/08/15 04:11 77,813,248 cusolverMg64_11.dll
2024/08/15 03:09 287,497,216 cusparse64_12.dll
2024/08/15 02:14 881,664 fatbinary.exe
2024/08/15 03:20 292,352 nppc64_12.dll
2024/08/15 03:20 16,235,008 nppial64_12.dll
2024/08/15 03:20 6,234,624 nppicc64_12.dll
2024/08/15 03:20 9,865,728 nppidei64_12.dll
2024/08/15 03:20 96,892,416 nppif64_12.dll
2024/08/15 03:20 39,228,416 nppig64_12.dll
2024/08/15 03:20 9,341,952 nppim64_12.dll
2024/08/15 03:20 36,831,232 nppist64_12.dll
2024/08/15 03:20 265,728 nppisu64_12.dll
2024/08/15 03:20 4,221,440 nppitc64_12.dll
2024/08/15 03:20 12,687,872 npps64_12.dll
2024/08/15 02:34 331,776 nvblas64_12.dll
2024/08/15 02:14 14,029,824 nvcc.exe
2024/08/15 02:14 343 nvcc.profile
2024/08/15 02:11 50,708,480 nvdisasm.exe
2024/08/15 02:14 838,656 nvfatbin_120_0.dll
2024/08/30 19:47 215,426,088 nvinfer_10.dll
2024/08/30 19:46 5,688 nvinfer_10.lib
2024/08/30 19:48 1,436,593,704 nvinfer_builder_resource_10.dll
2024/08/30 19:47 616,488 nvinfer_dispatch_10.dll
2024/08/30 19:46 4,362 nvinfer_dispatch_10.lib
2024/08/30 19:46 29,457,448 nvinfer_lean_10.dll
2024/08/30 19:46 5,104 nvinfer_lean_10.lib
2024/08/30 19:47 30,986,792 nvinfer_plugin_10.dll
2024/08/30 19:46 2,564 nvinfer_plugin_10.lib
2024/08/30 19:47 565,288 nvinfer_vc_plugin_10.dll
2024/08/30 19:46 2,374 nvinfer_vc_plugin_10.lib
2024/08/15 02:13 38,856,192 nvJitLink_120_0.dll
2024/08/15 02:23 4,901,888 nvjpeg64_12.dll
2024/08/15 02:14 20,608,000 nvlink.exe
2024/08/30 19:47 3,064,872 nvonnxparser_10.dll
2024/08/30 19:46 2,524 nvonnxparser_10.lib
2024/08/15 02:45 2,210,304 nvprof.exe
2024/08/15 02:11 254,464 nvprune.exe
2024/08/15 02:11 5,345,792 nvrtc-builtins64_126.dll
2024/08/15 02:11 45,535,744 nvrtc64_120_0.alt.dll
2024/08/15 02:11 45,475,328 nvrtc64_120_0.dll
2024/08/15 03:45 129 nvvp.bat
2024/08/15 02:14 20,220,416 ptxas.exe
2024/08/15 02:14 84,480 __nvcc_device_query.exe
71 File(s) 5,612,029,986 bytes
3 Dir(s) 128,267,644,928 bytes free

至此,就完成了 Tensorrt10.4 的安装。

安装和部署FaceFusion3.0.0

首先确保本地已经安装好 Python3.11 的开发环境,随后克隆官方项目:

git clone https://github.com/facefusion/facefusion.git
cd facefusion

安装基础依赖:

pip3 install -r requirements.txt

接着安装 onnxruntime-gpu:

pip3 install onnxruntime-gpu

ONNX Runtime-GPU 是一个高性能的推理引擎,它能够运行使用 ONNX (Open Neural Network Exchange) 格式表示的机器学习模型。 关键在于“GPU”部分,这意味着它专门针对 NVIDIA 的图形处理器 (GPU) 进行优化,以实现比在 CPU 上运行模型更快的速度和更高的效率。

注意默认安装的onnxruntime-gpu版本是19.2,它专门是为cuda12适配的。

安装 tensorrt 库:

pip3 install tensorrt==10.4.0 --extra-index-url https://pypi.nvidia.com

这里是安装 tensorrt 的python3.11运行库

最后安装torch:

pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu124

注意后缀是cu124,而不是cu118或者cu121

安装成功后,进入 python3.11 的终端:

>>> import onnxruntime as ort
>>> print(ort.get_available_providers())
['TensorrtExecutionProvider', 'CUDAExecutionProvider', 'CPUExecutionProvider']

如果三种后端支持都被打印出来了,分别是 cpu、cuda以及Tensorrt 那么说明配置和安装都成功了。

运行命令:

python3 facefusion.py run

进入换脸主界面:

由于有了Tensorrt的加持,也支持实时换脸,进入摄像头换脸界面:

python3 facefusion.py run --ui-layouts webcam

摄像头换脸效果:

最后,需要注意的是,FaceFusion3.0.0需要本地安装ffmpeg软件:

winget install -e --id Gyan.FFmpeg

Win11本地部署FaceFusion3最强AI换脸,集成Tensorrt10.4推理加速,让甜品显卡也能发挥生产力的更多相关文章

  1. ThinkPHP - 1 - 本地部署

    ThinkPHP ThinkPHP是一个快速.简单的基于MVC和面向对象的轻量级PHP开发框架,遵循Apache2开源协议发布,从诞生以来一直秉承简洁实用的设计原则,在保持出色的性能和至简的代码的同时 ...

  2. 英特尔与 Facebook 合作采用第三代英特尔® 至强® 可扩展处理器和支持 BFloat16 加速的英特尔® 深度学习加速技术,提高 PyTorch 性能

    英特尔与 Facebook 曾联手合作,在多卡训练工作负载中验证了 BFloat16 (BF16) 的优势:在不修改训练超参数的情况下,BFloat16 与单精度 32 位浮点数 (FP32) 得到了 ...

  3. 中国最强AI超级服务器问世,每秒提供AI计算2000万亿次

    https://mp.weixin.qq.com/s/1EVczHp11OJ4GEjeE3z5cA 业内唯一以“AI计算”为核心的人工智能大会昨天发布了一份重要报告. 9月12日,<中国AI计算 ...

  4. AI换脸教程:DeepFaceLab使用教程(1.安装及分解视频)

    首先需要选择合适的DeepFaceLab下载(https://www.deepfacelabs.com/list-5-1.html),然后安装相应的显卡驱动,如果已经准备好这些工作,那么恭喜你,终于开 ...

  5. AI换脸

    AI换脸 技术 调用到百度的AI接口,layui的图片上传,栅格化布局 核心代码 纯py文件运行 # encoding:utf-8 import requests import base64 impo ...

  6. Window10环境下,Stable Diffusion的本地部署与效果展示

    Diffusion相关技术最近也是非常火爆,看看招聘信息,岗位名称都由AI算法工程师变成了AIGC算法工程师,本周跟大家分享一些Diffusion算法相关的内容. Window10环境下,Stable ...

  7. 本地部署arcgis by eclipse

    首次来博客园发帖,从本地部署arcgis api开始吧: 首先还是下载arcgis的api包开始,在中国区官网下载arcgis包: 1.http://support.esrichina.com.cn/ ...

  8. ArcGIS server开发之API for js 本地部署

    ArcGIS Server for javascript 本地部署 第一次使用arcgis server for js开发,在经验方面还有很多的不足,所以将自己在开发过程中遇到的问题写出来与大家共享. ...

  9. Exceptionless 本地部署

    免费开源分布式系统日志收集框架 Exceptionless 前两天看到了这篇文章,亲身体会了下,确实不错,按照官方的文档试了试本地部署,折腾一番后终于成功,记下心得在此,不敢独享. 本地部署官方wik ...

  10. ArcGIS JavaScript API本地部署离线开发环境[转]

    原文地址:http://www.cnblogs.com/brawei/archive/2012/12/28/2837660.html 1 获取ArcGIS JavaScript API API的下载地 ...

随机推荐

  1. 题解:CF1984B Large Addition

    题解:CF1984B Large Addition 题意 判断 \(n\) 是否是两个位数相同的 \(large\) 数的和. 思路 有以下三种证明方法: 最高位为 \(1\),因为两个 \(larg ...

  2. 【Vue】HutoolExcel导出

    最近写Excel导出功能,发现需求有点复杂,这里整理一下思路和解决方案 一.需求背景: 老系统改造,功能和代码是现成的,预览了一下内容: 第一个是有特定样式,比如首行标题,以及红色的列名称 第二个,导 ...

  3. 【C】Re11 剩下的笔记

    关于字符常量问题: #include <stdio.h> #include <stdlib.h> #include <string.h> void string01 ...

  4. 【Vue】Re18 Router 第五部分(KeepAlive)

    一.KeepAlive概述 默认状态下,用户点击新的路由时,是访问新的组件 那么当前组件是会被销毁的,然后创建新的组件对象出来 如果某些组件频繁的使用,将造成内存空间浪费,也吃内存性能 所以需求是希望 ...

  5. 【Git】02 创建本地仓库 & 添加文件并提交

    1.创建版本库 版本库又名仓库,英文名repository, 你可以简单理解成一个目录,这个目录里面的所有文件都可以被Git管理起来 每个文件的修改.删除,Git都能跟踪,以便任何时刻都可以追踪历史, ...

  6. Spring Boot 基于 SCRAM 认证集成 Kafka 的详解

    一.说明 在现代微服务架构中,Kafka 作为消息中间件被广泛使用,而安全性则是其中的一个关键因素.在本篇文章中,我们将探讨如何在 Spring Boot 应用中集成 Kafka 并使用 SCRAM ...

  7. [CEOI 2013] 千岛之国 / Adritic 题解

    前言 题目链接:洛谷. 题意简述 你被困在一个被划分为 \(2500 \times 2500\) 的二维平面内!平面上有 \(n\)(\(n \leq 250000\))个岛屿你可以停留,你可以在这些 ...

  8. 06-canvas填充图形颜色

    1 <!DOCTYPE html> 2 <html lang="en"> 3 <head> 4 <meta charset="U ...

  9. 高性能无锁队列 Disruptor 核心原理分析及其在i主题业务中的应用

    作者:来自 vivo 互联网服务器团队- Li Wanghong 本文首先介绍了 Disruptor 高性能内存队列的基本概念.使用 Demo.高性能原理及源码分析,最后通过两个例子介绍了 Disru ...

  10. 2021 CCPC 威海

    gym 知乎 确定了我先写缺省源,gjk 正开,zsy 倒开的策略 先读了 EFGH,发现是概率.博弈.计数,只能做 H,感觉我已经到点了.队友签了 AJ zsy 说 M 是多项式快速幂并准备开冲,看 ...