1.用python字典统计CSV数据的步骤和代码示例

为了使用Python字典来统计CSV数据,我们可以使用内置的csv模块来读取CSV文件,并使用字典来存储统计信息。以下是一个详细的步骤和完整的代码示例:

1.1步骤

(1)导入csv模块。

(2)打开CSV文件并读取数据。

(3)初始化一个空字典来存储统计信息。

(4)遍历CSV文件的每一行数据。

(5)对于每一行数据,根据需要选择一列或多列作为键(key),并统计其出现次数(或执行其他类型的统计)。

(6)将统计结果存储在字典中。

(7)关闭CSV文件。

(8)(可选)输出或处理统计结果。

1.2代码示例

假设我们有一个CSV文件data.csv,内容如下:

Name,Age,Gender
Alice,25,Female
Bob,30,Male
Charlie,25,Male
Alice,26,Female

我们想统计每个年龄(Age)的人数。

import csv  

# 初始化一个空字典来存储统计信息
age_counts = {} # 打开CSV文件并读取数据
with open('data.csv', mode='r', encoding='utf-8') as csv_file:
csv_reader = csv.DictReader(csv_file) # 跳过表头(如果有)
next(csv_reader, None) # 消耗迭代器中的第一行(即表头) # 遍历CSV文件的每一行数据
for row in csv_reader:
age = int(row['Age']) # 假设年龄是整数,如果不是则需要相应处理 # 统计每个年龄的人数
if age in age_counts:
age_counts[age] += 1
else:
age_counts[age] = 1 # 输出统计结果
for age, count in age_counts.items():
print(f"Age {age}: {count} people")

运行上述代码,我们将得到以下输出:

Age 25: 2 people
Age 26: 1 people
Age 30: 1 people

这样,我们就使用Python字典成功地统计了CSV数据中的年龄信息。

2.详细的代码示例例子展示

我们展示几个不同的例子,这些例子展示了如何使用Python字典来统计CSV文件中的数据。

2.1统计每个名字的出现次数

假设我们有一个CSV文件names.csv,内容如下:

Name
Alice
Bob
Charlie
Alice
Bob
David

我们想要统计每个名字的出现次数。

import csv  

name_counts = {}  

with open('names.csv', mode='r', encoding='utf-8') as csv_file:
csv_reader = csv.reader(csv_file)
next(csv_reader, None) # 跳过表头 for row in csv_reader:
name = row[0]
if name in name_counts:
name_counts[name] += 1
else:
name_counts[name] = 1 # 输出统计结果
for name, count in name_counts.items():
print(f"Name {name}: {count} occurrences")

2.2统计每个年龄段的用户数量

假设我们有一个CSV文件users.csv,内容如下:

Name,Age
Alice,25
Bob,32
Charlie,18
David,28
Eve,19

我们想要统计18-24岁、25-30岁、31岁及以上每个年龄段的用户数量。

import csv  

age_groups = {
'18-24': 0,
'25-30': 0,
'31+': 0
} with open('users.csv', mode='r', encoding='utf-8') as csv_file:
csv_reader = csv.DictReader(csv_file)
next(csv_reader, None) # 跳过表头 for row in csv_reader:
age = int(row['Age'])
if 18 <= age <= 24:
age_groups['18-24'] += 1
elif 25 <= age <= 30:
age_groups['25-30'] += 1
else:
age_groups['31+'] += 1 # 输出统计结果
for age_group, count in age_groups.items():
print(f"Age group {age_group}: {count} users")

2.3统计每个性别在每个年龄段的用户数量

假设我们有一个CSV文件users_advanced.csv,内容如下:

Name,Age,Gender
Alice,25,Female
Bob,32,Male
Charlie,18,Male
David,28,Male
Eve,19,Female

我们想要统计每个性别在每个年龄段(18-24岁、25-30岁、31岁及以上)的用户数量。

import csv  

age_gender_counts = {
'18-24': {'Male': 0, 'Female': 0},
'25-30': {'Male': 0, 'Female': 0},
'31+': {'Male': 0, 'Female': 0}
} with open('users_advanced.csv', mode='r', encoding='utf-8') as csv_file:
csv_reader = csv.DictReader(csv_file)
next(csv_reader, None) # 跳过表头 for row in csv_reader:
age = int(row['Age'])
gender = row['Gender']
if 18 <= age <= 24:
age_group = '18-24'
elif 25 <= age <= 30:
age_group = '25-30'
else:
age_group = '31+'
age_gender_counts[age_group][gender] += 1 # 输出统计结果
for age_group, gender_counts in age_gender_counts.items():
print(f"Age group {age_group}:")
for gender, count in gender_counts.items():
print(f" {gender}: {count} users")
print()

3.统计字典的缺点和局限

统计字典(即使用Python字典来存储统计信息)在数据分析和处理中是一种非常有效的方法,但它也有一些潜在的缺点和局限性:

(1)内存占用:字典在内存中存储键值对,当数据量非常大时,它们会占用相当多的内存。这可能会导致程序在内存有限的系统上运行缓慢或崩溃。

(2)稀疏性:如果统计的数据非常稀疏(即许多键在字典中只出现一次或根本不出现),则字典将包含大量的键值对,其中许多值都是1或0。这可能导致内存使用效率低下。

(3)不可排序:字典本身是无序的,尽管在Python 3.7+中插入顺序被保留(但这不应该被用作排序的依据)。如果我们需要按照特定的顺序遍历统计结果,我们可能需要额外的步骤来对字典的键或值进行排序。

(4)并发问题:在多线程或多进程环境中,直接修改字典可能会引发并发问题,如数据竞争和不一致的结果。在这种情况下,我们可能需要使用锁或其他同步机制来保护对字典的访问。

(5)不支持快速范围查询:字典不支持像列表或数组那样的范围查询。如果我们需要查找在某个范围内的所有键或值,我们可能需要遍历整个字典,这可能会很慢。

(6)无法直接进行数学运算:字典本身不支持数学运算(如加法、减法、乘法等)。如果我们需要对统计结果进行数学运算,我们可能需要将字典转换为其他数据结构(如NumPy数组或Pandas DataFrame),或者编写额外的代码来处理字典中的值。

(7)不支持多维索引:字典只能使用单个键来索引值。如果我们需要基于多个键来索引值(例如,在多维数据集中),我们可能需要使用嵌套字典或其他数据结构。

(8)可读性和可维护性:对于复杂的统计任务,使用字典可能会导致代码变得难以阅读和维护。在这种情况下,使用更高级的数据结构或库(如Pandas DataFrame)可能会更合适。

尽管有这些缺点,但字典在统计和数据处理中仍然是非常有用的工具。它们提供了灵活且高效的方式来存储和检索数据,并且对于许多常见任务来说已经足够了。然而,在设计我们的程序时,我们应该考虑我们的具体需求和环境,并选择最适合我们的数据结构和方法。

用python字典统计CSV数据的更多相关文章

  1. python字典结构化数据

    https://www.cnblogs.com/evablogs/p/6692947.html dict: 键-值(key-value)对集合{key:value},查找速度极快,但浪费内存. 1 2 ...

  2. python加载csv数据

    入门机器学习时,一些测试数据是网络上的csv文件.这里总结了两种加载csv文件的方式: 1 通过numpy.urllib2加载 import numpy as np import urllib2 ur ...

  3. Python 简明教程 --- 12,Python 字典

    微信公众号:码农充电站pro 个人主页:https://codeshellme.github.io 代码写的越急,程序跑得越慢. -- Roy Carlson 目录 Python 字典是另一种非常实用 ...

  4. Python字典使用--词频统计的GUI实现

    字典是针对非序列集合而提供的一种数据类型,字典中的数据是无序排列的. 字典的操作 为字典增加一项 dict[key] = value students = {"Z004":&quo ...

  5. python 处理CSV数据

    从CS中导入数据 Python中有一个CSV模块支持读写各种方言格式的CSV文件.方言是很重要的,因为没有一个同意的CSV标准,不同的应用实现CSV的方式略有不同,当看到文件的内容的时候你往往很容易第 ...

  6. python列表、字典与csv

    在日常数据分析时最常打交道的是csv文件和list,dict类型.涉及到的主要需求有: 将一个二重列表[[],[]]写入到csv文件中 从文本文件中读取返回为列表 将一字典写入到csv文件中 从csv ...

  7. Python基础总结之第十天开始【认识一下python的另一个数据对象-----字典】(新手可相互督促)

    看了大家的评论,还是有意外的收货.感谢每个小伙伴的评论与补充. 众人拾柴火焰高~ 今天的笔记是记录python中的数据对象----字典! 前面有讲到list列表和tuple元组的笔记,他们都是一样可以 ...

  8. 用python实现简单EXCEL数据统计的实例

    用python实现简单EXCEL数据统计的实例 下面小编就为大家带来一篇用python实现简单EXCEL数据统计的实例.小编觉得挺不错的,现在就分享给大家,也给大家做个参考.一起跟随小编过来看看吧 任 ...

  9. 使用 json 模块,使json数据格式与Python字典dict数据格式互相转换,获取数据更加方便

    一.定义 JSON 是一种数据格式 使用 javaScript (Java 死鬼破特)对象表示法 二.特点 1.JSON 与 XML格式数据的区别 ====== 两种格式的数据,都是跨语言,跨平台 c ...

  10. python处理csv数据

    import csv #从文件读取 reader = csv.reader(file(srcFilePath,'rb')) for line in reader: #忽略第一行 if reader.l ...

随机推荐

  1. k8s 深入篇———— 守护容器[九]

    前言 守护容器,也叫做deamonset, 只做整理 正文 顾名思义,DaemonSet 的主要作用,是让你在 Kubernetes 集群里,运行一个 Daemon Pod. 所以,这个 Pod 有如 ...

  2. jenkins 持续集成和交付 —— 参数化构建(八)

    前言 这个其实就是我们构建的脚本时候希望能有一些变量,能给我们更多的选择. 正文 选择这个: 填好后,这边就有一个参数配置: 那么接下来就是把变量放到我们的脚本中. 如下: 脚本变成变量符,这样就ok ...

  3. Caused by: org.gradle.api.internal.plugins.PluginApplicationException: Failed to apply plugin[id:xxx.xxx.xxx]

    前言 看下这个完整的bug: Caused by: org.gradle.api.internal.plugins.PluginApplicationException: Failed to appl ...

  4. 推荐一个计算Grad-CAM的Python库

    前言 类激活图CAM(class activation mapping)用于可视化深度学习模型的感兴趣区域,增加了神经网络的可解释性.现在常用Grad-CAM可视化,Grad-CAM基于梯度计算激活图 ...

  5. 从Vue2转换为Vue3

    方便的Vue2到Vue3生命周期映射直接来自Vue3 Composition API文档,我认为这是了解事物将如何变化以及如何使用它们的最有用的方法之一. beforeCreate -> use ...

  6. 对key值理解

    key相当于一种身份标识标识,就像我们的身份证用来辨识一个人一样. 每个key对应一个组件, 相同的key react会认为是同一个组件,这样后续相同的key对应组件都不会被创建.... 而有了key ...

  7. 力扣18(java)-四数之和(中等)

    题目: 给你一个由 n 个整数组成的数组 nums ,和一个目标值 target .请你找出并返回满足下述全部条件且不重复的四元组 [nums[a], nums[b], nums[c], nums[d ...

  8. Apsara Stack 技术百科 | 边缘场景智能云化,让云无处不在

    ​简介:在过去十年间,随着计算技术的发展和移动互联网的广泛普及,各行业对数据本地计算和智能分析的需求与日俱增,越来越多的应用场景被接入了终端设备,导致终端侧的数据陡然增长,中心节点的处理算力不堪重负. ...

  9. 运营也用的起来的数据分析工具:Quick BI即席分析详解

    ​简介: 数据部门是一个容易被投诉的"高危"部门,需求响应慢.数据准确性不高会影响业务的发展. 然而数据分析师每周动辄就有几十个需求在手,无限的加班也无法解决所有问题,到底怎样才能 ...

  10. [GPT] vue 的 quasar 框架 在 layout 模版中 如何获取 子页面当前使用的 useMeta

      在 Quasar 框架中,用 Vue Router 的 meta 字段来获取子页面当前使用的 useMeta . 首先,您需要在路由配置中设置子页面的 meta 字段.例如: const rout ...