题目


分析

由于\(a_i=1或2\)时\(d(a_i)=a_i\),且其余情况修改后答案只会越来越小,

考虑用树状数组维护区间和,用并查集跳过\(a_i=1或2\)的情况


代码

#include <cstdio>
#include <cctype>
#define rr register
using namespace std;
const int N=1000011,M=300011;
typedef long long lll;
int n,m,a[M],f[M],Cnt; lll c[M];
int prime[M],d[N],mc[N]; bool v[N];
inline signed iut(){
rr int ans=0; rr char c=getchar();
while (!isdigit(c)) c=getchar();
while (isdigit(c)) ans=(ans<<3)+(ans<<1)+(c^48),c=getchar();
return ans;
}
inline void print(lll ans){
if (ans>9) print(ans/10);
putchar(ans%10+48);
}
inline void Pro(int n){
d[1]=1,mc[1]=1;
for (rr int i=2;i<=n;++i){
if (!v[i]) prime[++Cnt]=i,d[i]=mc[i]=2;
for (rr int j=1;j<=Cnt&&prime[j]<=n/i;++j){
v[i*prime[j]]=1;
if (i%prime[j]==0){
mc[i*prime[j]]=mc[i]+1;
d[i*prime[j]]=d[i]/mc[i]*(mc[i]+1);
break;
}
mc[i*prime[j]]=2,
d[i*prime[j]]=d[i]<<1;
}
}
}
inline signed getf(int u){return f[u]==u?u:f[u]=getf(f[u]); }
inline void update(int x,int y){for (;x<=n;x+=-x&x) c[x]+=y;}
inline lll query(int l,int r){
rr lll ans=0; --l;
for (;r>l;r-=-r&r) ans+=c[r];
for (;l>r;l-=-l&l) ans-=c[l];
return ans;
}
signed main(){
n=iut(),m=iut(),Pro(N-11),f[n+1]=n+1;
for (rr int i=1;i<=n;++i) c[i]=c[i-1]+(a[i]=iut());
for (rr int i=n;i;--i) f[i]=i,c[i]-=c[i&(i-1)];
for (rr int z,l,r;m;--m){
z=iut(),l=iut(),r=iut();
if (z==2) print(query(l,r)),putchar(10);
else for (rr int i=getf(l);i<=r;){
update(i,d[a[i]]-a[i]),a[i]=d[a[i]];
f[i]=i+(a[i]<3),i=(getf(i)==i)?i+1:f[i];
}
}
return 0;
}

#树状数组,并查集#CF920F SUM and REPLACE的更多相关文章

  1. [BZOJ3038]上帝造题的七分钟2 树状数组+并查集

    考试的时候用了两个树状数组去优化,暴力修改,树状数组维护修改后区间差值还有最终求和,最后骗了40分.. 这道题有好多种做法,求和好说,最主要的是开方.这道题过的关键就是掌握一点:在数据范围内,最多开方 ...

  2. BZOJ 3211 花神游历各国 (树状数组+并查集)

    题解:首先,单点修改求区间和可以用树状数组实现,因为开平方很耗时间,所以在这个方面可以优化,我们知道,开平方开几次之后数字就会等于1 ,所以,用数组记录下一个应该开的数,每次直接跳到下一个不是1的数字 ...

  3. BZOJ3211 花神游历各国 【树状数组 + 并查集】

    题目 输入格式 输出格式 每次x=1时,每行一个整数,表示这次旅行的开心度 输入样例 4 1 100 5 5 5 1 1 2 2 1 2 1 1 2 2 2 3 1 1 4 输出样例 101 11 1 ...

  4. [BZOJ3211]花神游历各国&&[BZOJ3038] 上帝造题的七分钟2 树状数组+并查集

    3211: 花神游历各国 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 4057  Solved: 1480[Submit][Status][Discu ...

  5. CodeVS2492 上帝造题的七分钟2(树状数组+并查集)

    传送门 树状数组模板题.注意优化,假设某个数的值已经是1了的话.那么我们以后就不用对他进行操作了,这个能够用并查集实现. 这道题还有个坑的地方,给出查询区间端点的a,b,有可能a>b. #inc ...

  6. POJ 2985 The k-th Largest Group(树状数组 并查集/查找第k大的数)

    传送门 The k-th Largest Group Time Limit: 2000MS   Memory Limit: 131072K Total Submissions: 8690   Acce ...

  7. luogu 4145 花神游历各国 线段树/树状数组+并查集

    此题一看便是RMQ问题,但是由于开平方的特殊操作,tag操作失效 此时发现特性:sqrt最多执行6此便使值到达1/0,此时可以剪枝不进行该操作,利用并查集到达特性找根,根代表还可以进行操作的点,再利用 ...

  8. SPOJ GSS4 Can you answer these queries IV ——树状数组 并查集

    [题目分析] 区间开方+区间求和. 由于区间开方次数较少,直接并查集维护下一个不是1的数的位置,然后暴力修改,树状数组求和即可. 这不是BZOJ上上帝造题7分钟嘛 [代码] #include < ...

  9. BZOJ 3038 上帝造题的七分钟2 树状数组+并查集

    题目大意:一个序列,有两种操作.1.将一段数中的每个数开根号.2.查询一段数的和. 思路:和3211是一个题,有兴趣的能够看看我的那篇博客. CODE: #include <cmath> ...

  10. 差分+树状数组【p4868】Preprefix sum

    Description 前缀和(prefix sum)\(S_i=\sum_{k=1}^i a_i\). 前前缀和(preprefix sum) 则把\(S_i\)作为原序列再进行前缀和.记再次求得前 ...

随机推荐

  1. 硬件开发笔记(十): 硬件开发基本流程,制作一个USB转RS232的模块(九):创建CH340G/MAX232封装库sop-16并关联原理图元器件

    前言   有了原理图,可以设计硬件PCB,在设计PCB之间还有一个协同优先动作,就是映射封装,原理图库的元器件我们是自己设计的.为了更好的表述封装设计过程,本文描述了CH340G和MAX232芯片封装 ...

  2. Arrays.asList的坑

    Arrays.asList 方法的坑 此方法接受可变个数的参数 构建一个ArrayList 可此ArrayList 非彼ArrayList ,他返回的是 Arrays 的一个内部类,实现了Abstra ...

  3. linux FTP服务搭建,匿名用户访问创建上传文件

    1.安装vsftpd 首先确认本地是否安装vftpd rpm -qa|grep vftpd 安装vsftpd yum install vsftpd 为什么呢??因为写权限问题   root 用户. 这 ...

  4. 来也科技收购Mindsay背后:新旧势力交锋智能自动化备受关注

    来也科技收购Mindsay背后:新旧势力交锋智能自动化备受关注 来也科技收购Mindsay背后:历程一波三折,意义非同寻常 来也科技收购Mindsay,国产RPA正式进军国际市场 收购Mindsay来 ...

  5. 记录: OpenAI中转代理API接口服务的使用

    由于OpenAI提供服务的地区列表里没有 China,因此想要方便使用OpenAI API的话就需要用到中转服务. 本文介绍的iDataRiver平台便提供这样的API,且比官方OpenAI还要便宜, ...

  6. [.Net]使用Soa库+Abp搭建微服务项目框架(一):Abp与DDD相关知识回顾

    ​ 在企业中大型项目中,随着业务的不断拓展,项目发展到一定程度,需要寻求项目的各模块解耦,独立成为微服务.如何实现呢? 首先我们先来简单回顾一下Abp框架怎样实现(DDD)领域驱动设计的,Abp框架的 ...

  7. nginx四层和七层负载的配置

    四层负载和七层负载是两种不同类型的负载均衡策略,它们分别在网络的不同层次上工作.在Nginx中,这两种负载均衡策略可以通过配置nginx.conf文件来实现. 四层负载(L4 Load Balanci ...

  8. 解决linux平台无法使用getch()的问题

    参考https://www.cnblogs.com/jiangxinnju/p/5516906.html#:~:text=%E5%8F%A6%E5%A4%96%E5%A4%A7%E5%AE%B6%E5 ...

  9. ESP8266 SPI 开发之软硬基础分析

    一 什么是SPI接口? SPI是一种高速.高效率的串行接口技术.通常由一个主模块和一个或多个从模块组成,主模块选择一个从模块进行同步通信,从而完成数据的交换.SPI是一个环形结构,通信时需要至少4根线 ...

  10. HDFS Balancer负载均衡器

    目录 1.背景 2.什么是平衡 2.1 每个DataNode的利用率计算 2.2 集群的利用率 2.3 平衡 3.hdfs balancer语法 4.运行一个简单的balance案例 4.1 设置平衡 ...