本文简要的介绍了卡方分布、卡方概率密度函数和卡方检验,并通过SPSS实现了一个卡方检验例子,不仅对结果进行了解释,而且还给出了卡方、自由度和渐近显著性的计算过程。本文用到的数据"2.2.sav"链接为: https://url39.ctfile.com/f/2501739-875711187-f3dbb8?p=2096 (访问密码: 2096)

一.卡方分布

卡方分布是一种概率分布,若\(k\)个随机变量\(Z_1、......、Z_k\)是相互独立且符合标准正态分布的随机变量(数学期望为0、方差为1),那么随机变量\(Z\)的平方和\(X = \sum\limits_{i = 1}^k {Z_i^2}\)被称为服从自由度为\(k\)的卡方分布,记作:\(X \sim {\chi ^2}\left( k \right)\)。

二.卡方概率密度函数

卡方分布的概率密度函数为:

\[{f_x}\left( x \right) = \frac{1}{{{2^{\frac{k}{2}}}\Gamma \left( {\frac{k}{2}} \right)}}{x^{\frac{k}{2} - 1}}{e^{\frac{{ - x}}{2}}}
\]

其中,\(x \ge 0\),当\(x \le 0\)时\({f_x}\left( x \right) = 0\),\(\Gamma\)表示Gamma函数。

不同自由度情况下的卡方分布概率密度曲线图:



随着自由度\(k\)的增加,曲线逐渐趋于对称。当自由度\(k\)趋近于无穷时,卡方分布趋近正态分布。

三.卡方检验

卡方检验是非参数检验,以卡方分布为理论依据的假设检验方法,基本原理是通过样本的频数分布来推断总体是否服从某种理论分布。卡方检验的原假设为:样本所属总体的分布与理论分布之间不存在显著差异。卡方检验的检验统计量方程为:

\[{\chi ^2} = \sum\limits_{i = 1}^k {\frac{{{{\left( {{M_{oi}} - {M_{ei}}} \right)}^2}}}{{{M_{ei}}}}}
\]

\(\chi ^2\)统计量在大样本条件下逐渐服从自由度为\(k-1\)的卡方分布,\(M_{oi}\)表示观测频数,\(M_{ei}\)表示理论频数。\({\chi ^2}\)统计量越小,表示观测频数与理论频数越接近。如果小于由显著性水平和自由度确定的临界值,那么认为样本所属的总体分布与理论分布无显著差异。

四.卡方检验例子

实验目的:想知道不同年龄组的样本个数是否存在显著差异。如果\(p>0.05\),那么接受原假设,即不同年龄组的样本个数并不存在显著不同。

变量视图如下所示:



数据视图如下所示:



分析->非参数检验->旧对话框->卡方:



卡方检验结果如下所示:



重点说明下卡方、自由度和渐近显著性是如何计算的:

1.卡方计算

\[\frac{{{{\left( {45 - 50} \right)}^2}}}{{50}} + \frac{{{{\left( {51 - 50} \right)}^2}}}{{50}} + \frac{{{{\left( {52 - 50} \right)}^2}}}{{50}} + \frac{{{{\left( {52 - 50} \right)}^2}}}{{50}} = \frac{{25 + 1 + 4 + 4}}{{50}} = \frac{{34}}{{50}} = 0.68
\]

2.自由度计算

\(k-1\),\(k\)表示分类变量数。

3.渐近显著性计算

渐近显著性就是\(p\)值,\(p=1-F(卡方值,自由度)\)。使用Python代码计算:

from scipy.stats import chi2
# 第1个参数表示卡方值,第2个参数表示自由度
p = 1 - chi2.cdf(0.68, 3)
print(p) # 0.8778977619609463

在平时看的医学论文中,比较常见的场景是根据卡方检验来计算患者组和对照组的性别是否具有显著性差异:

参考文献:

[1]卡方分布:https://zh.wikipedia.org/zh-hans/卡方分布

[2]《SPSS统计分析入门与应用精解》

[3]卡方检验:https://www.ibm.com/docs/zh/spss-statistics/28.0.0?topic=tests-chi-square-test

[4]数据2.2.sav: https://url39.ctfile.com/f/2501739-875711187-f3dbb8?p=2096 (访问密码: 2096)

SPSS统计教程:卡方检验的更多相关文章

  1. SPSS详细教程:OR值的计算

    SPSS详细教程:OR值的计算 一.问题与数据 研究者想要探索人群中不同性别者喜欢竞技类或娱乐性体育活动是否有差异.研究者从学习运动医学的学生中随机招募50名学生,记录性别并询问他们喜欢竞技类还是娱乐 ...

  2. SPSS实例教程:多重线性回归,你用对了么

    SPSS实例教程:多重线性回归,你用对了么 在实际的医学研究中,一个生理指标或疾病指标往往受到多种因素的共同作用和影响,当研究的因变量为连续变量时,我们通常在统计分析过程中引入多重线性回归模型,来分析 ...

  3. SPSS统计功能与模块对照表

    SPSS统计功能 - 应用速查表第一列为统计方法,中间为统计功能,最后一列为所在模块 1 ANOVA Models(单因素方差分析:简单因子) : 摘要 描述 方差 轮廓 - SPSS Base 2 ...

  4. 因子分析spss怎么做 spss因子分析教程及结果解释

    因子分析spss怎么做 spss因子分析教程及结果解释 因子分析spss可以简化数据结构,将具有错综复杂关系的变量综合为数据较少的因子,在信息损失最小的情况下对变量进行分类,不过有些朋友多spss因子 ...

  5. SPSS 统计图形

    统计图能够简洁.直观地对主要的数据信息进行呈现,反映事物内在的规律和关联.当然难免会丢失数据的细节,鱼与熊掌不可兼得. 根据统计图呈现变量的数量将其分为单变量图.双变量图.多变量图,然后再根据测试尺度 ...

  6. spss C# 二次开发 学习笔记(六)——Spss统计结果的输出

    Spss的二次开发可以很简单,实例化一个对象,然后启用服务,接着提交命令,最后停止服务. 其中重点为提交命令,针对各种统计功能需求,以及被统计分析的数据内容等,命令的内容可以很复杂,但也可以简单的为一 ...

  7. SPSS python教程:[1]安装Python Essentials

    python机器学习-乳腺癌细胞挖掘(博主亲自录制视频)https://study.163.com/course/introduction.htm?courseId=1005269003&ut ...

  8. Spss统计描述分析

    总觉得有些技能学会了是不会忘的,但是还是要记录一下,怕记忆力不像狗皮膏药,并不那么牢固. 1.文件的合并 两个数据文件的合并 点击添加个案,这一步按照自己的需求选择,也可以打开外部数据集,在这里打开的 ...

  9. SPSS统计分析过程包括描述性统计、均值比较、一般线性模型、相关分析、回归分析、对数线性模型、聚类分析、数据简化、生存分析、时间序列分析、多重响应等几大类

    https://www.zhihu.com/topic/19582125/top-answershttps://wenku.baidu.com/search?word=spss&ie=utf- ...

  10. SPSS教程学习笔记1:K个独立样本秩和检验及多重比较 (转载) (非参数假设检验)

    本文地址:http://www.datasoldier.net/archives/173版权声明:本文为原创文章,版权归 数据小兵 所有,欢迎分享本文,转载请保留出处!     方差分析经常会出现不满 ...

随机推荐

  1. CentOS安装时钟同步服务

    使用chrony用于时间同步 yum install chrony -y vim /etc/chrony.conf cat /etc/chrony.conf | grep -v "^#&qu ...

  2. pandas之使用自定义函数

    如果想要应用自定义的函数,或者把其他库中的函数应用到 Pandas 对象中,有以下三种方法: 1) 操作整个 DataFrame 的函数:pipe() 2) 操作行或者列的函数:apply() 3)  ...

  3. 执行计划display_cursor函数

    问题描述:关于oracle查看真实的执行计划,使用select * from table(dbms_xplan.display_cursor(null,null));的方式来获取执行计划 参考文档:h ...

  4. MySQL InnoDB Architecture 简要介绍

    MySQL InnoDB 存储引擎整体架构图: 一.内存存储结构 1.Buffer Pool buffer pool 是主内存中的一块儿存储区域,用于存储访问的表及索引数据.这样从内存中直接访问获取使 ...

  5. abp(net core)+easyui+efcore实现仓储管理系统——组织管理升级之下(六十二)

    Abp(net core)+easyui+efcore实现仓储管理系统目录 abp(net core)+easyui+efcore实现仓储管理系统--ABP总体介绍(一) abp(net core)+ ...

  6. 学习笔记——树形dp

    树形 dp 介绍 概念 树形 dp,顾名思义,就是在树上做 dp,将 dp 的思想建立在树状结构之上. 常见的树形 dp 有两种转移方向: 从叶节点向根节点转移,这种也是树形 dp 中较为常见的一种. ...

  7. WPF 引用字体文件资源

    外部字体文件 1.后台代码引用字体 将一个名为"ChineseCharacterSpecialFont.ttf"的ttf文件,放在桌面路径,后台引用方式如下: 1 var ttfF ...

  8. spring xml配置中引用java配置不能用ClassPathXmlApplicationContext

    现在的目的是想测试在xml配置中引用java配置的bean CD唱片的接口: package v4.c2; public interface CompactDisc { void play(); } ...

  9. #Python 缺失值的检测与处理,处理部分

  10. 18年CCCC赛后总结

    C4赛后总结: 我正式入坑以来,大约5个月,这也是我第一次出去参与这样正式的比赛,其实比赛结果并不尽人意,但有很多还是需要记录下来的,通过这次比赛的确获得了很多的比赛经验: 一赛前: 其实赛前的状态, ...