摘要:如何定位分布式缓存数据库Redis大KEY问题,实操案例带你掌握优化方法。

【背景】

访问Redis 5.0 cluster集群出现OOM报错,报错信息为(error) OOM command not allowed when used memory > ‘maxmemory’,部分ECS应用程序无法向数据库写入,影响服务的正常使用。执行set t2 s2时,数据库报错OOM,如下图:

【拓扑】

环境信息:

Redis 5.0 cluster集群 4G内存

DCS网段:192.168.1.0/24

分片1:master 192.168.1.12 slave 192.168.1.37

分片2:master 192.168.1.10 slave 192.168.1.69

分片3:master 192.168.1.26 slave 192.168.1.134

【分析思路】

【详细步骤】

一、查看监控

查看Redis实例监控,显示Redis集群内存占用46.97%,无明显异常,结果如下图所示:

查看节点的内存监控。其中分片2中master节点192.168.1.10内存使用率达到100%,其余两个分片分内存使用率均在20%左右,结果如下图所示:

二、确认异常分片信息

通过上述监控信息可得知,该redis集群中的分片2中内存使用率达100%。有且仅有该分片内存异常。

三、大KEY分析

在线分析

① 工具分析:使用华为云管理控制台缓存分析-大Key分析工具。执行完成后,查看信息即可。结果如下图所示:(string类型保存top20,list/set/zset/hash类型保存top80)

具体使用方法参考以下链接:https://support.huaweicloud.com/usermanual-dcs/dcs-ug-190808001.html

② 命令分析:使用redis-cli -h IP -p port –bigkeys命令,该工具会列出各个类型数据中大Key中的最大的那个key的信息。结果如下图所示:

如上图所示,可以得出该环境中string类型的大key为“nc_filed/_pk”,大小为13283byte,list、set、hash、zset类型的数据未发现大key。

离线方式

离线分析需要使用专门的rdb_bigkeys分析工具,对rdb文件进行分析。工具地址: https://github.com/weiyanwei412/rdb_bigkeys。具体步骤如下:

编译方法:

# yum install git go -y

# mkdir /home/gocode/

# cd /home/gocode/

# git clone https://github.com/weiyanwei412/rdb_bigkeys.git

# cd rdb_bigkeys

# go build

执行完成生成可执行文件rdb_bigkeys。
使用方法:

./rdb_bigkeys -bytes 1024 -file bigkeys.csv -sorted -threads 4 /home/redis/dump.rdb

参数说明:

-bytes 1024:筛选大于1024字节的key

-file bigkeys.csv:将结果保存到bigkeys.csv文件

-sorted:从大到小进行排序

-threads:使用的线程个数

/home/redis/dump.rdb:实际的rdb文件路径

生成文件样式如下所示:

每列分别为数据库编号,key类型,key名,key大小,元素数量,最大值元素名,元素大小,key过期时间。文档链接:https://www.cnblogs.com/yqzc/p/12425533.html

四、解决方案

导致本次OOM问题的根因为大KEY导致数据大小分布不均匀,某一个分片内存达到maxmemory,在进行数据写入的过程中,如果调度到该分片,则会产生OOM问题。将该分片的rdb文件导出一份,以便于后期针对大key做对应的优化。

临时方案:

为尽快回复业务,删除上有步骤中查询到的大KEY,执行操作如下:(非字符串的bigkey,不要使用 del 删除,使用 hscan、sscan、zscan 方式渐进式删除)

长期方案:

通过对大KEY进行拆分,将一个大的KEY拆分为多个小的KEY, 变成value1,value2… valueN,打散分不到不同的分片中,避免因为数据倾斜导致的数据分布不均。

其他的类型的数据也可以按照相同的方式进行拆分重组,从而避免大KEY带来的影响。

五、 结果验证

查看分片监控,192.168.1.10内存使用率下降到24%,结果如下图所示:

执行set t2 s2,返回正常,登录集群,执行get命令,正常返回数据信息。结果如下所示,至此业务恢复正常。

【优化及建议】

1) 配置节点级别的内存利用率监控指标的告警。如果某个节点存在大key,这个节点比其他节点内存使用率高很多,会触发告警,便于用户发现潜在的大key。

2) 配置节点级别的入网最大带宽、出网最大带宽、CPU利用率监控指标的告警。如果某个节点存在热key,这个节点的带宽占用、CPU利用率都比其他节点高,该节点会容易触发告警,便于用户发现潜在热key。

3) string类型控制在10KB以内,hash、list、set、zset元素尽量不超过5000。

4) 定期通过大key、热key分析工具检查集群中是否存在大key问题,尽早识别风险。

点击关注,第一时间了解华为云新鲜技术~

摘要:如何定位分布式缓存数据库Redis大KEY问题,实操案例带你掌握优化方法。

【背景】

访问Redis 5.0 cluster集群出现OOM报错,报错信息为(error) OOM command not allowed when used memory > ‘maxmemory’,部分ECS应用程序无法向数据库写入,影响服务的正常使用。执行set t2 s2时,数据库报错OOM,如下图:

【拓扑】

环境信息:

Redis 5.0 cluster集群 4G内存

DCS网段:192.168.1.0/24

分片1:master 192.168.1.12 slave 192.168.1.37

分片2:master 192.168.1.10 slave 192.168.1.69

分片3:master 192.168.1.26 slave 192.168.1.134

【分析思路】

【详细步骤】

一、查看监控

查看Redis实例监控,显示Redis集群内存占用46.97%,无明显异常,结果如下图所示:

查看节点的内存监控。其中分片2中master节点192.168.1.10内存使用率达到100%,其余两个分片分内存使用率均在20%左右,结果如下图所示:

二、确认异常分片信息

通过上述监控信息可得知,该redis集群中的分片2中内存使用率达100%。有且仅有该分片内存异常。

三、大KEY分析

在线分析

① 工具分析:使用华为云管理控制台缓存分析-大Key分析工具。执行完成后,查看信息即可。结果如下图所示:(string类型保存top20,list/set/zset/hash类型保存top80)

具体使用方法参考以下链接:https://support.huaweicloud.com/usermanual-dcs/dcs-ug-190808001.html

② 命令分析:使用redis-cli -h IP -p port –bigkeys命令,该工具会列出各个类型数据中大Key中的最大的那个key的信息。结果如下图所示:

如上图所示,可以得出该环境中string类型的大key为“nc_filed/_pk”,大小为13283byte,list、set、hash、zset类型的数据未发现大key。

离线方式

离线分析需要使用专门的rdb_bigkeys分析工具,对rdb文件进行分析。工具地址: https://github.com/weiyanwei412/rdb_bigkeys。具体步骤如下:

编译方法:

# yum install git go -y

# mkdir /home/gocode/

# cd /home/gocode/

# git clone https://github.com/weiyanwei412/rdb_bigkeys.git

# cd rdb_bigkeys

# go build

执行完成生成可执行文件rdb_bigkeys。

使用方法:

./rdb_bigkeys -bytes 1024 -file bigkeys.csv -sorted -threads 4 /home/redis/dump.rdb

参数说明:

-bytes 1024:筛选大于1024字节的key

-file bigkeys.csv:将结果保存到bigkeys.csv文件

-sorted:从大到小进行排序

-threads:使用的线程个数

/home/redis/dump.rdb:实际的rdb文件路径

生成文件样式如下所示:

每列分别为数据库编号,key类型,key名,key大小,元素数量,最大值元素名,元素大小,key过期时间。文档链接:https://www.cnblogs.com/yqzc/p/12425533.html

四、解决方案

导致本次OOM问题的根因为大KEY导致数据大小分布不均匀,某一个分片内存达到maxmemory,在进行数据写入的过程中,如果调度到该分片,则会产生OOM问题。将该分片的rdb文件导出一份,以便于后期针对大key做对应的优化。

临时方案:

为尽快回复业务,删除上有步骤中查询到的大KEY,执行操作如下:(非字符串的bigkey,不要使用 del 删除,使用 hscan、sscan、zscan 方式渐进式删除)

长期方案:

通过对大KEY进行拆分,将一个大的KEY拆分为多个小的KEY, 变成value1,value2… valueN,打散分不到不同的分片中,避免因为数据倾斜导致的数据分布不均。

其他的类型的数据也可以按照相同的方式进行拆分重组,从而避免大KEY带来的影响。

五、 结果验证

查看分片监控,192.168.1.10内存使用率下降到24%,结果如下图所示:

执行set t2 s2,返回正常,登录集群,执行get命令,正常返回数据信息。结果如下所示,至此业务恢复正常。

【优化及建议】

1) 配置节点级别的内存利用率监控指标的告警。如果某个节点存在大key,这个节点比其他节点内存使用率高很多,会触发告警,便于用户发现潜在的大key。

2) 配置节点级别的入网最大带宽、出网最大带宽、CPU利用率监控指标的告警。如果某个节点存在热key,这个节点的带宽占用、CPU利用率都比其他节点高,该节点会容易触发告警,便于用户发现潜在热key。

3) string类型控制在10KB以内,hash、list、set、zset元素尽量不超过5000。

4) 定期通过大key、热key分析工具检查集群中是否存在大key问题,尽早识别风险。

点击关注,第一时间了解华为云新鲜技术~

技术解读丨分布式缓存数据库Redis大KEY问题定位及优化建议的更多相关文章

  1. 缓存数据库redis

    什么是Redis? Redis是一个TCP服务器,支持请求/响应协议. 在Redis中,请求通过以下步骤完成: 客户端向服务器发送查询,并从套接字读取,通常以阻塞的方式,用于服务器响应. 服务器处理命 ...

  2. Spring Cloud(7):事件驱动(Stream)分布式缓存(Redis)及消息队列(Kafka)

    分布式缓存(Redis)及消息队列(Kafka) 设想一种情况,服务A频繁的调用服务B的数据,但是服务B的数据更新的并不频繁. 实际上,这种情况并不少见,大多数情况,用户的操作更多的是查询.如果我们缓 ...

  3. 缓存数据库-redis数据类型和操作(list)

    转: 狼来的日子里! 奋发博取 缓存数据库-redis数据类型和操作(list) 一:Redis 列表(List) Redis列表是简单的字符串列表,按照插入顺序排序.你可以添加一个元素导列表的头部( ...

  4. 深度评测丨 GaussDB(for Redis) 大 Key 操作的影响

    本文分享自华为云社区<墨天轮评测:GaussDB(for Redis)大Key操作的影响>,作者: 高斯 Redis 官方博客. 在前一篇文章<墨天轮评测:GaussDB(for R ...

  5. .NET WebAPI 采用 IDistributedCache 实现分布式缓存过滤器 Redis 模式

    分布式缓存是由多个应用服务器共享的缓存,通常作为访问它的应用服务器的外部服务进行维护. 分布式缓存可以提高 ASP.NET Core 应用的性能和可伸缩性,尤其是当应用由云服务或服务器场托管时. 与其 ...

  6. Redis大 key的发现与删除方法全解析

    个推作为国内第三方推送市场的早期进入者,专注于为开发者提供高效稳定的推送服务,经过9年的积累和发展,服务了包括新浪.滴滴在内的数十万APP.由于我们推送业务对并发量.速度要求很高,为此,我们选择了高性 ...

  7. Redis大key的发现与删除方法全解析

    个推作为国内第三方推送市场的早期进入者,专注于为开发者提供高效稳定的推送服务,经过9年的积累和发展,服务了包括新浪.滴滴在内的数十万APP.由于我们推送业务对并发量.速度要求很高,为此,我们选择了高性 ...

  8. Redis 大 key 问题总结

    多大的 key 算大? 阿里云Redis 最佳实践中提到 合理的 Key 中 Value 的字节大小,推荐小于10 KB.过大的 Value 会引发数据倾斜.热点Key.实例流量或 CPU 性能被占满 ...

  9. Redis 大 key 问题 & 问题分析 & 解决方案

    Redis 大 key 问题 & 问题分析 & 解决方案 Redis 什么是 Redis 大 key 单个key 存储的 value 很大 hash, set,zset,list 结构 ...

  10. 技术分享丨华为鲲鹏架构Redis知识二三事

    摘要:华为云鲲鹏Redis,业界首个基于自研ARM-Based全栈整合的Redis云服务,支持双机热备的HA架构,提供单机.主备.Proxy集群.Cluster集群实例类型,满足高读写性能场景及弹性变 ...

随机推荐

  1. MongoDB 中的索引分析

    MongoDB 的索引 前言 MongoDB 使用 B 树还是 B+ 树索引 单键索引 创建单键索引 使用 expireAfterSeconds 创建 TTL 索引 复合索引 最左匹配原则 ESR 规 ...

  2. Windows下音视频对讲演示程序(声学回音消除、噪音抑制、语音活动检测、自动增益控制、自适应抖动缓冲)(2023年07月13日更新)

    Windows下音视频对讲演示程序 必读说明 简介   本软件根据<道德经>为核心思想而设计,实现了两个设备之间进行音视频对讲,一般可用于楼宇对讲.智能门铃对讲.企业员工对讲.智能对讲机. ...

  3. dicker 常用命令(简洁版)

  4. AlibabaCloudToolkit的简单使用与部署

    问题 以往的写好的应用程序放到服务器上部署的方式都是在本地打包成jar包,传到服务器上,在服务器用命令行关闭原版本的应用程序,在启动新版本的应用程序,每次写好一个功能要与前端联调都要经历这些繁琐的步骤 ...

  5. 使用 Vue 3 插件(Plugin)实现 OIDC 登录和修改密码(OIDC 系统以 Keycloak 为例)

    背景 目前单位系统常用 Keycloak 作为认证系统后端,而前端之前写的也比较随意,这次用 Vue 3 插件以及 Ref 响应式来编写这个模块.另外,这个可能是全网唯一使用 keycloak 的 O ...

  6. 向量数据库Chroma极简教程

    引子 向量数据库其实最早在传统的人工智能和机器学习场景中就有所应用.在大模型兴起后,由于目前大模型的token数限制,很多开发者倾向于将数据量庞大的知识.新闻.文献.语料等先通过嵌入(embeddin ...

  7. 解决Few-shot问题的两大方法:元学习与微调

    .center { width: auto; display: table; margin-left: auto; margin-right: auto } 基于元学习(Meta-Learning)的 ...

  8. RLHF · PBRL | 发现部分 D4RL tasks 不适合做 offline reward learning 的 benchmark

    论文题目:Benchmarks and Algorithms for Offline Preference-Based Reward Learning,TMLR 20230103 发表. open r ...

  9. Halcon、HDevelop快速入门

    ​ HDevelop基础一 HDevelop概述 HDevelop是一款机器视觉的集成开发环境.下面将对HDevelop的界面内容做一下简单的介绍. 界面介绍 打开HDevelop,将看到以下画面. ...

  10. [复习随笔]python_dcgan网络复习小知识:模型定义

    定义参数 dataroot - the path to the root of the dataset folder. We will talk more about the dataset in t ...