三、证明:在最大堆的任一子树中,该子树所包含的最大元素在该子树的根结点上。

文心一言:

在最大堆中,根结点是整个堆中最大元素的孩子,因此它包含的最大元素是在该子树的根结点上。

我们可以通过递归的方式证明任意子树中的最大元素都在该子树的根结点上。假设我们已经证明了深度为 d-1 的子树中的最大元素都在该子树的根结点上,现在我们来证明深度为 d 的子树中的最大元素都在该子树的根结点上。

考虑深度为 d 的子树,假设其中的最大元素不是该子树的根结点,那么它必须位于该子树的某个孩子节点上。但这样就违反了最大堆的性质,因为该子树的根结点是整个子树中最大的元素,不可能有一个比它更大的元素是该子树的孩子节点。因此,假设不成立,最大元素一定位于该子树的根结点上。

综上,我们通过递归的方式证明了在最大堆的任一子树中,该子树所包含的最大元素在该子树的根结点上。

讯飞星火:

本题考查了最大堆的定义,利用定义证明即可。

证明:设$A\subseteq V$,A是最大堆,令$A={x_{1},x_{2},\ldots x_{n}}$,且$f(x_{1})>f(x_{2})>\ldots >f(x_{n})>0$.

则$x_{1}$为该子树的根结点。

假设$x_{k}$不是该子树的根结点,即$f(x_{k})< f(x_{1})$,

由$f(x_{i})\le f(x_{k})+d(x_{i},x_{k})$得$f(x_{i})-f(x_{k})\le d(x_{i},x_{k})$.

又因为$d(x_{i},x_{k})\ge 0$,所以$f(x_{i})\le f(x_{k})$.

这与已知条件“$f(x_{1})>f(x_{2})>\ldots >f(x_{n})>0$”矛盾。

故假设不成立。

因此在最大堆的任一子树中,该子树所包含的最大元素在该子树的根结点上。

华为盘古:

证明:在最大堆的任一子树中,该子树所包含的最大元素在该子树的根结点上,

可以按照以下步骤进行:

1.确定最大堆:假设最大堆为k,包含k个元素。

2.选择子树:选择最大堆中的第k个元素作为该子树的根节点。

3.确定根结点:该子树的根节点称为根结点。

4.证明:假设根结点在堆顶,则存在一个链表,其中每一行都表示一个元素。对于该链表的任意一个元素,都可以找到一个与之相邻的元素,使得这两个元素的和等于k。我们可以通过以下步骤证明这一点:

遍历链表,找到最大堆中的第一个元素和该元素的相邻元素。

如果这两个元素的和等于k,那么我们可以验证链表中存在一个环,使得该环的任意一条边都与堆中的任何一条边相邻。

如果环的任意一条边都与堆中的一条边相邻,那么我们可以通过以下步骤证明这一点:

如果环的任意一条边都与堆中的一条边不相邻,那么我们可以通过链表的遍历顺序来找到与该边相邻的元素,并计算它们之间的和是否等于k。

如果和等于k,那么我们可以证明该环与堆中的一条边相邻,从而证明了该子树所包含的最大元素在该子树的根结点上。

因此,在最大堆的任一子树中,该子树所包含的最大元素在该子树的根结点上。

360智脑:

假设存在一个最大堆的子树T,其中T的深度为h,而最大的元素是max_heap(T)。

首先,我们可以从任意一个节点开始遍历这个子树,假设我们当前正在处理节点v。

如果节点v没有子节点,则直接返回它作为当前的最大元素。否则,我们需要比较v的两个子节点u和w的大小关系,以确定哪个子节点应该成为新的最大元素。

因为最大堆的性质,v的最大子节点应该是在它的左子树上。因此,我们需要将v的右子节点作为新的最大值加入结果集合中,并继续处理v的左子树。

然后,我们将v的左子节点视为当前最大元素来处理。重复这个过程直到所有子树都遍历完毕,得到的结果就是最大堆的最终结果。

综上所述,最大堆的任一子树中所包含的最大元素在根节点上。

chatglm:

为了证明这个结论,我们可以采用归纳法。首先,我们明确最大堆的定义:最大堆是一个完全二叉树,其中每个非叶节点的最大子节点都出现在该节点的右子树中。

假设在最大堆的某一子树中,该子树所包含的最大元素不在该子树的根节点上。那么,该子树的根节点必然有一个右子节点(设为 x)大于它,因为最大堆要求每个非叶节点的最大子节点都出现在该节点的右子树中。

我们考虑将该子树以 x 为根进行递归,此时,x 成为了新的根节点。我们可以得出,x 的左子树和右子树都是最大堆。根据归纳假设,我们可以得出,x 的左子树所包含的最大元素在 x 的左子树的根节点上,x 的右子树所包含的最大元素在 x 的右子树的根节点上。

由于 x 是原子树的一个节点,因此在原子树中,x 的值大于等于其子节点的值。而 x 的左子树和右子树所包含的最大元素都在它们的根节点上,因此,原子树中所包含的最大元素必然在 x 的左子树的根节点或者右子树的根节点上。但是,我们已知 x 的右子节点 x'大于 x,因此,原子树中所包含的最大元素必然在 x 的右子树的根节点 x'上。

然而,这与我们的假设相矛盾,因为我们假设该子树所包含的最大元素不在该子树的根节点上。因此,我们的假设不成立,结论得证。

所以,在最大堆的任一子树中,该子树所包含的最大元素在该子树的根结点上。

chatgpt:

我们可以使用数学归纳法来证明在最大堆的任一子树中,该子树所包含的最大元素在该子树的根节点上。

基础步骤:

当子树只包含一个节点时,该节点就是子树的最大元素,而且它同时也是该子树的根节点。因此,在这种情况下,结论成立。

归纳假设:

假设在包含k个节点的子树中,该子树所包含的最大元素在该子树的根节点上。

归纳步骤:

现在考虑一个包含k+1个节点的子树。由于最大堆的定义,根节点的值必然大于等于其子节点的值。因此,在这个k+1节点的子树中,根节点的值必定比其它子节点的值都大。我们需要证明该根节点确实是整个子树中的最大元素。

假设有一个节点x不是根节点,并且它的值比根节点的值大。根据最大堆的定义,需要满足两个条件:一是x是根节点的子节点之一,二是x的值小于根节点的父节点(如果存在)。然而,根据归纳假设,根节点的父节点(如果存在)的值必然小于等于根节点的值。因此,我们得出矛盾,即假设不成立。

根据归纳法的原理,我们可以得出结论:在最大堆的任一子树中,该子树所包含的最大元素在该子树的根节点上。

文心一言 VS 讯飞星火 VS chatgpt (45)-- 算法导论6.1 3题的更多相关文章

  1. 【对比】文心一言对飚ChatGPT实操对比体验

    前言 缘由 百度[文心一言]体验申请通过 本狗中午干饭时,天降短信,告知可以体验文心一言,苦等一个月的实操终于到来.心中这好奇的对比心理油然而生,到底是老美的[ChatGPT]厉害,还是咱度娘的[文心 ...

  2. 【个人首测】百度文心一言 VS ChatGPT GPT-4

    昨天我写了一篇文章GPT-4牛是牛,但这几天先别急,文中我测试了用GPT-4回答ChatGPT 3.5 和 Notion AI的问题,大家期待的图片输入也没有出现. 昨天下午百度发布了文心一言,对标C ...

  3. 文心一言,通营销之学,成一家之言,百度人工智能AI大数据模型文心一言Python3.10接入

    "文心"取自<文心雕龙>一书的开篇,作者刘勰在书中引述了一个古代典故:春秋时期,鲁国有一位名叫孔文子的大夫,他在学问上非常有造诣,但是他的儿子却不学无术,孔文子非常痛心 ...

  4. 获取了文心一言的内测及与其ChatGPT、GPT-4 对比结果

    百度在3月16日召开了关于文心一言(知识增强大语言模型)的发布会,但是会上并没现场展示demo.如果要测试的文心一言 也要获取邀请码,才能进行测试的. 我这边通过预约得到了邀请码,大概是在3月17日晚 ...

  5. 百度生成式AI产品文心一言邀你体验AI创作新奇迹:百度CEO李彦宏详细透露三大产业将会带来机遇(文末附文心一言个人用户体验测试邀请码获取方法,亲测有效)

    目录 中国版ChatGPT上线发布 强大中文理解能力 智能文学创作.商业文案创作 图片.视频智能生成 中国生成式AI三大产业机会 新型云计算公司 行业模型精调公司 应用服务提供商 总结 获取文心一言邀 ...

  6. 阿里版ChatGPT:通义千问pk文心一言

    随着 ChatGPT 热潮卷起来,百度发布了文心一言.Google 发布了 Bard,「阿里云」官方终于也宣布了,旗下的 AI 大模型"通义千问"正式开启测试! 申请地址:http ...

  7. 基于讯飞语音API应用开发之——离线词典构建

    最近实习在做一个跟语音相关的项目,就在度娘上搜索了很多关于语音的API,顺藤摸瓜找到了科大讯飞,虽然度娘自家也有语音识别.语义理解这块,但感觉应该不是很好用,毕竟之前用过百度地图的API,有问题也找不 ...

  8. android用讯飞实现TTS语音合成 实现中文版

    Android系统从1.6版本开始就支持TTS(Text-To-Speech),即语音合成.但是android系统默认的TTS引擎:Pic TTS不支持中文.所以我们得安装自己的TTS引擎和语音包. ...

  9. android讯飞语音开发常遇到的问题

    场景:android项目中共使用了3个语音组件:在线语音听写.离线语音合成.离线语音识别 11208:遇到这个错误,授权应用失败,先检查装机量(3台测试权限),以及appid的申请时间(35天期限), ...

  10. 初探机器学习之使用讯飞TTS服务实现在线语音合成

    最近在调研使用各个云平台提供的AI服务,有个语音合成的需求因此就使用了一下科大讯飞的TTS服务,也用.NET Core写了一个小示例,下面就是这个小示例及其相关背景知识的介绍. 一.什么是语音合成(T ...

随机推荐

  1. linux常用命令(八) tar 打包、压缩、解包、解压缩

    Linux 常用的压缩与解压缩命令有:tar.gzip.gunzip.bzip2.bunzip2.compress .uncompress. zip. unzip.rar.unrar 等. 首先要弄清 ...

  2. svn: E200007: Retrieval of mergeinfo unsupported解决

     http://blog.csdn.net/intlgj/article/details/39080605 svn: E200007: Retrieval of mergeinfo unsupport ...

  3. 《最新出炉》系列初窥篇-Python+Playwright自动化测试-19-处理鼠标拖拽-中篇

    1.简介 上一篇中,主要是介绍了拖拽的各种方法的理论知识以及实践,今天宏哥讲解和分享一下划取字段操作.例如:需要在一堆log字符中随机划取一段文字,然后右键选择摘取功能. 2.划取字段操作 划取字段操 ...

  4. 本地化部署自建类ChatGPT服务远程访问

    Text generation web UI可为类ChatGPT的大型语言模型提供能够快速上手的网页界面,不仅可以提高使用效率,还可满足私有化部署,或对模型进行自定义.目前,该Web UI已经支持了许 ...

  5. 轻松掌握组件启动之MongoDB(下):高可用复制集架构环境搭建

    引言 上一章节中,我们详细介绍了在典型的三节点复制集环境中搭建MongoDB的步骤和注意事项.从准备配置文件到启动MongoDB进程,我们一步步指导读者完成了环境的设置.在本章节中,我们将进一步深入, ...

  6. jenkins 原理篇——pipeline流水线 声明式语法详解

    大家好,我是蓝胖子,相信大家平时项目中或多或少都有用到jenkins,它的piepeline模式能够对项目的发布流程进行编排,优化部署效率,减少错误的发生,如何去写一个pipeline脚本呢,今天我们 ...

  7. Telegram 正式引入国产小程序技术

    Telegram 宣布为其开发者提供了一项"能够在 App 中运行迷你应用"的新功能( 迷你应用即 Mini App,下文中以"小程序"代替). 在一篇博客文章 ...

  8. AGC 补题笔记

    [AGC001] A.BBQ Easy 由于最大数肯定要和一个比自己小的数搭配保留该数,不如选择保留次大数,如此递归即解.因此将序列排序后输出序号为奇数的数即可. B.Mysterious Light ...

  9. atest

    #include<iostream> using namespace std; int main() { reutrn 0; }

  10. STM32CUBEIDE 如何将变量定义到指定内存地址

    使用场景如下: 我需要将bootloader/APP的版本号和一些字段信息定义到指定FLASH地址. 在STM32CubeIDE中的方法: 截止当前STM32CubeIDE还没有提供图形化的针对FLA ...