webgl智慧楼宇发光系列之线性采样下高斯模糊

前面一篇文章 <webgl智慧楼宇发光效果算法系列之高斯模糊>,   我们知道了 高斯模糊的本质原理,就是对每个像素,按照正态分布的权重去获取周边像素的值进行平均,是一种卷积操作。

同时我们可以指定周边像素的数量,比如可以是3X3,或者5X5,通用的表达就是N X N, 数字N通常称之为模糊半径,这在之前的文章的代码中有体现(uRadius):

uniform float uRadius;
float gaussianPdf(in float x, in float sigma) {
return 0.39894 * exp( -0.5 * x * x/( sigma * sigma))/sigma;
}
void main() {
for( int i = 1; i < MAX_KERNEL_RADIUS; i ++ ) {
float x = float(i);
if(x > radius){
break;
}
...
}
vec4 result = vec4(1.0) - exp(-diffuseSum/weightSum * uExposure);
gl_FragColor = result;
}
`

效率问题

通常,我们希望模糊的效果越强烈,模糊半径就会要求越大。所谓的半径就是上面的数字N。

我们知道,要实现一个NxN大小的高斯模糊,在纹理的每个像素点,都需要去获取周边N个像素点。因为1024_1024大小的纹理,要实现33 _ 33 大小的高斯模糊,需要访问大概1024 _ 1024 _ 33 * 33≈11.4亿个纹理像素,才能应用整个图像的模糊效果。

为了获得更有效的算法,我们来看看高斯函数的一些特性:

  • 二维高斯函数可以通过将两个一维高斯函数相加来计算。
  • 分布为2σ的高斯函数等于分布为σ的两个高斯函数的乘积。

高斯函数的这两个属性为我们提供了进行大量优化的空间。

基于第一个属性,我们可以将二维高斯函数分成两个一维函数。在使用片段着色器的情况下,我们可以将高斯滤镜分为水平模糊滤镜和垂直模糊滤镜,在渲染后仍可获得准确的结果。 这个时候,1024_1024大小的纹理,要实现33 _ 33 大小的高斯模糊,需要访问大概1024 _ 1024 _ 33*2≈6,900万个纹理提取。这种优化明细减少了一个量级。文章 《webgl智慧楼宇发光效果算法系列之高斯模糊》已经实现了这一优化。

第二个属性可用于绕过平台上的硬件限制,这些平台仅在一次pass中仅支持有限数量的纹理提取。

线性采样

到此,我们知道了把一个二维的高斯模糊 分离成两个一维的高斯模糊。效率上也有了大幅度的提高。但是实际上,我们还可以通过线性采样的特性进一步提高效率。

我们知道,要获取一个像素信息,就要做一次贴图的读取。这就意味33个像素信息,就需要做33次贴图的读取操作。 但是由于在GPU上面可以随意进行双线线性插值,而没有额外的性能消耗。  这就意味着,如果我们不再像素的中心点读取贴图,就可以获得多个像素的信息。  如下图所示:

假设两个像素,我们在像素1中心点读取贴图就是获取像素1的颜色,在像素2中心点读取贴图就是获取像素2的颜色;而在像素1中心点和像素2中心点的某个位置读取贴图,则会获取像素1和像素2的颜色的加权平均的效果。

因为我们做高斯模糊的时候,本身就是获取周边相邻元素的加权平均值,因此利用线性采样的这个特性,可以把原本2个像素的采样,减少为一次采样。 如果原本33次采样,则可以减少到17次。

对于两个纹素的采样,需要调整坐标使其与纹素#1中心的距离等于纹素#2的权重除以两个权重之和。同样的,坐标与纹素#2中心的距离应该等于纹素#1的权重除以两个权重之和。

然后我们就有了计算线性采样高斯滤波的权重和位移公式:

代码讲解

  • 首先定义一个uniform变量,该变量表示是否启用线性采样的方法:
uniform bool uUseLinear;
  • 然后如果使用线性采样,就把原本的采样次数减少一半:
 if(uUseLinear){
radius = uRadius / 2.0;
}
  • 再然后,如果使用线性采样,就使用上述的公式进行像素提取:
if(uUseLinear){
// http://rastergrid.com/blog/2010/09/efficient-gaussian-blur-with-linear-sampling/
float t1 = 2.0 * x - 1.0,t2 = 2.0 * x ;
float w1 = gaussianPdf(t1,fSigma);
float w2 = gaussianPdf(t2,fSigma);
w = w1 + w2;
t = (t1 * w1 + t2 * w2) / w;
} vec2 uvOffset = uDirection * invSize * t;
vec4 sample1 = texture2D( uColorTexture, vUv + uvOffset).rgba;
vec4 sample2 = texture2D( uColorTexture, vUv - uvOffset).rgba;
diffuseSum += (sample1 + sample2) * w;
weightSum += 2.0 * w;

最终的绘制效果如下:

其中左边的未使用线性采样的机制,而右边的使用了线性采样,可以看出右边再减少了一半的采样的情况下,效果和左边的基本没有差别。

而效率上,通过测试,右边比左边大概提高了40%的渲染效率。

总结

通过线性采样的机制,我们可以看到效率提高了近一倍。这在一些对性能要求高得场景或者移动终端是很有意义。

其实要做出一个好的发光效果,涉及到相关算法是很多了,而且细节之处都需要关注。

先看看我们已经做了得一些发光楼宇得案例吧, 以下都是再简单模型(立方体) + 贴图 + 光照 + 发光 出来得效果,如果模型层面在优化,应该还可以有更酷效果:

如果对可视化感兴趣,可以和我交流,微信541002349. 另外关注公众号“ITMan彪叔” 可以及时收到更多有价值的文章。

参考文档

参考文档:http://rastergrid.com/blog/2010/09/efficient-gaussian-blur-with-linear-sampling/

本文部分素材使用了参考文档中的内容。

webgl智慧楼宇发光系列之线性采样下高斯模糊的更多相关文章

  1. webgl智慧楼宇发光效果算法系列之高斯模糊

    webgl智慧楼宇发光效果算法系列之高斯模糊 如果使用过PS之类的图像处理软件,相信对于模糊滤镜不会陌生,图像处理软件提供了众多的模糊算法.高斯模糊是其中的一种. 在我们的智慧楼宇的项目中,要求对楼宇 ...

  2. 基于 HTML5 WebGL 的智慧楼宇可视化系统

    前言 可视化的智慧楼宇在 21 世纪是有急迫需求的,中国被世界称为"基建狂魔",全球高层建筑数量位居首位,所以对于楼宇的监控是必不可少.智慧楼宇可视化系统更多突出的是管理方面的功能 ...

  3. 基于 HTML5 WebGL 的智慧楼宇三维可视化监控

    前言 可视化的智慧楼宇在 21 世纪是有急迫需求的,中国被世界称为"基建狂魔",全球高层建筑数量位居首位,所以对于楼宇的监控是必不可少.智慧楼宇可视化系统更多突出的是管理方面的功能 ...

  4. 使用three.js(webgl)搭建智慧楼宇、设备检测、数字孪生——第十三课

    老子云:有道无术,术尚可求,有术无道,止于术. 咱开篇引用老子的话术,也没其它意思,只是最近学习中忽有感悟,索性就写了上来. 这句话用现代辩证思维理解,这里的"道" 大抵是指方法论 ...

  5. 基于 HTML5 WebGL 的 智慧楼宇能源监控系统

    前言 21世纪,在能源危机和全球气候变暖的压力下,太阳能等可再生能源越来越受到关注,其中光伏建筑一体化逐渐成为绿色发展方式和生活方式,加强节能降耗,支持低碳产业和新能源.可再生能源发展,也已经成为国家 ...

  6. WEBGL 2D游戏引擎研发系列 第一章 <新的开始>

    WEBGL 2D游戏引擎研发系列 第一章 <新的开始> ~\(≥▽≤)/~HTML5游戏开发者社区(群号:326492427) 转载请注明出处:http://html5gamedev.or ...

  7. 数据结构与算法系列2 线性表 使用java实现动态数组+ArrayList源码详解

    数据结构与算法系列2 线性表 使用java实现动态数组+ArrayList源码详解 对数组有不了解的可以先看看我的另一篇文章,那篇文章对数组有很多详细的解析,而本篇文章则着重讲动态数组,另一篇文章链接 ...

  8. .Neter玩转Linux系列之六:Linux下MySQL的安装、配置、使用

    一.Linux安装MySQL (1)下载安装包:https://dev.mysql.com/downloads/mysql/ (2)解压并安装 命令:tar zxvf 文件名 解压完成之后,重名一下文 ...

  9. .Neter玩转Linux系列之三:Linux下的分区讲解

    基础篇 .Neter玩转Linux系列之一:初识Linux .Neter玩转Linux系列之二:Linux下的文件目录及文件目录的权限 .Neter玩转Linux系列之三:Linux下的分区讲解 .N ...

  10. .Neter玩转Linux系列之四:Linux下shell介绍以及TCP、IP基础

    基础篇 .Neter玩转Linux系列之一:初识Linux .Neter玩转Linux系列之二:Linux下的文件目录及文件目录的权限 .Neter玩转Linux系列之三:Linux下的分区讲解 .N ...

随机推荐

  1. OpenNESS NTS 的前世今生

    目录 文章目录 目录 NEV SDK NEV SDK 的软件架构 NEV SDK 的持续演进 OpenNESS NTS NTS 在 VM 场景中的应用 NTS 在 Container 场景中的应用 N ...

  2. ES集群的扩缩容

    ES集群节点的扩容缩容案例 1.在集群中添加和删除节点 当您启动Elasticsearch实例时,您正在启动一个节点.Elasticsearch集群是一组具有相同cluster.name属性的节点.当 ...

  3. IDS4 傻瓜式实践指南

    前言: 这是一篇实践指南,不会过多的解释原理(因为我也说不清楚,想了解的同学请移步老张的博客,里面有非常详细的介绍),本篇文章讲解如何简单的使用IDS4来实现单点登录,以及遇到的一些坑实现功能: 1. ...

  4. uniapp android app 铃声静音,真正的免打扰

    需要加入这个权限: <uses-permission android:name=\"android.permission.ACCESS_NOTIFICATION_POLICY\&quo ...

  5. 20220314线上panic总结

    panic: runtime error: invalid memory address or nil pointer dereference [signal SIGSEGV: segmentatio ...

  6. Swift 属性装饰器

    import ArgumentParser @propertyWrapper struct WrapperTest { internal var innerValue: Int { didSet { ...

  7. 网页唤起qq加群

    今天在网上大浪淘沙了一番,90%的教程都是使用的鹅厂官方的加群组件,但是有个致命bug就是这个加群组件只能唤起自己创建的群,这就很尴尬了,后来偶然发现在qq群资料那边就可以直接获取到加群的链接,害得我 ...

  8. RabbbitMQ RabbitListener使用IP动态队列 Attribute value must be constant

    在RabbitMQ消息队列使用 @RabbitListener 接收消息,队列名称使用常量命名,但是如果使用动态队列名称,比如根据系统 ip 命名队列名称. 获取服务器 IP /** * 获取服务器i ...

  9. 浏览器的同源策略 jsonp方法解决跨域

    // 浏览器的同源性         // 在 浏览器 处理请求时 默认执行的是 同源策略         // 也就是 浏览器 只 允许 同源的项目/请求 之间 获取响应体内容         // ...

  10. #9134.反转eehniy

    blog 题面 yinhee 去面试 Google 总裁. 面试官给他了一个长度为 \(n\) 的 \(01\) 串. 面试官给他以下两种操作是的这个序列前 \(n-m\) 个数字与后 \(n-m\) ...