算法金 | 秒懂 AI - 深度学习五大模型:RNN、CNN、Transformer、BERT、GPT 简介
1. RNN(Recurrent Neural Network)
时间轴
1986年,RNN 模型首次由 David Rumelhart 等人提出,旨在处理序列数据。
关键技术
- 循环结构
- 序列处理
- 长短时记忆网络(LSTM)和门控循环单元(GRU)
核心原理
RNN 通过循环结构让网络记住以前的输入信息,使其能够处理序列数据。每个节点不仅接收当前输入,还接收前一个节点的输出,从而形成记忆能力。
创新点
RNN 的创新点在于其循环结构,这使其能处理时间序列数据。但原始 RNN 容易出现梯度消失问题,后来的 LSTM 和 GRU 模型通过引入门控机制,极大地改善了这一问题。
适用数据
- 时间序列数据
- 语音信号
- 文本数据
应用场景
- 语言模型
- 语音识别
- 时间序列预测
经典案例
苹果的 Siri 和 Google 的语音助手都使用了基于 RNN 的技术来进行语音识别和处理。
2. CNN(Convolutional Neural Network)
时间轴
1989年,CNN 由 Yann LeCun 等人提出,主要用于图像处理。
关键技术
- 卷积层
- 池化层
- 全连接层
核心原理
CNN 通过卷积层提取图像的局部特征,池化层进行降维处理,全连接层最终进行分类。卷积操作通过滤波器在图像上滑动,捕捉不同的特征。
创新点
CNN 的创新点在于卷积层的使用,使其能够有效提取图像的空间特征,大大减少了参数数量,提高了计算效率。
适用数据
- 图像数据
- 视频数据
应用场景
- 图像分类
- 物体检测
- 图像生成
经典案例
LeNet-5 是最早的 CNN 之一,被用来进行手写数字识别,并取得了显著的成果。
3. Transformer
时间轴
2017年,Google 发布了 Transformer 模型,极大地提升了自然语言处理的效率。
关键技术
- 自注意力机制
- 编码器-解码器架构
- 多头注意力机制
核心原理
Transformer 通过自注意力机制,可以在处理序列数据时并行计算,从而大大提升了效率。编码器处理输入序列,解码器生成输出序列,自注意力机制使得模型能够关注到序列中的重要信息。
创新点
Transformer 摒弃了传统 RNN 的循环结构,通过自注意力机制和并行处理,实现了更快的训练速度和更好的效果。
适用数据
- 文本数据
- 语言数据
应用场景
- 机器翻译
- 文本生成
- 情感分析
经典案例
Google 的神经机器翻译系统(GNMT)使用了 Transformer 技术,实现了高质量的机器翻译。
4. BERT(Bidirectional Encoder Representations from Transformers)
时间轴
2018年,Google 发布了 BERT 模型,大大提升了自然语言处理任务的表现。
关键技术
- 双向编码器
- 预训练和微调
- 掩码语言模型
核心原理
BERT 通过双向编码器同时考虑上下文信息,使用掩码语言模型在预训练阶段预测被掩盖的词语,然后进行任务特定的微调。
创新点
BERT 的创新在于其双向性和预训练方法,使得模型在各种 NLP 任务中都表现优异,尤其是在需要上下文理解的任务中。
适用数据
- 文本数据
应用场景
- 问答系统
- 文本分类
- 命名实体识别
经典案例
Google 搜索引擎在 2019 年开始使用 BERT 来理解用户查询,提高搜索结果的相关性。
5. GPT(Generative Pre-trained Transformer)
时间轴
2018年,OpenAI 发布了 GPT 模型,此后不断迭代,GPT-2 和 GPT-3 进一步提升了文本生成能力。
关键技术
- 自回归语言模型
- 预训练和微调
- 大规模训练数据
核心原理
GPT 通过自回归方式生成文本,使用大量数据进行预训练,然后在特定任务上微调。模型基于 Transformer 架构,能够生成高质量的连贯文本。
创新点
GPT 的创新在于其生成能力和规模,通过预训练和大规模数据,能够生成自然流畅的文本,几乎达到人类水平。
适用数据
- 文本数据
应用场景
- 文本生成
- 对话系统
- 内容创作
经典案例
OpenAI 的 GPT-3 已经被广泛应用于各种文本生成任务,如代码生成、新闻撰写和对话机器人。以上便是 RNN、CNN、Transformer、BERT 和 GPT 五大深度学习模型的简介。它们各自在不同领域中展现了强大的能力和广泛的应用,推动了人工智能技术的发展和应用。
算法金 | 秒懂 AI - 深度学习五大模型:RNN、CNN、Transformer、BERT、GPT 简介的更多相关文章
- Deep Learning(深度学习)整理,RNN,CNN,BP
申明:本文非笔者原创,原文转载自:http://www.sigvc.org/bbs/thread-2187-1-3.html 4.2.初级(浅层)特征表示 既然像素级的特征表示方法没有作用,那怎 ...
- 一文看懂AI深度学习丨曼孚科技
深度学习(Deep Learning)是机器学习的一种,而机器学习是实现人工智能的必经途径. 目前大部分表现优异的AI应用都使用了深度学习技术,引领了第三次人工智能的浪潮. 一. 深度学习的概念 深度 ...
- 深度学习(一)——CNN算法流程
深度学习(一)——CNN(卷积神经网络)算法流程 参考:http://dataunion.org/11692.html 0 引言 20世纪60年代,Hubel和Wiesel在研究猫脑皮层中用于局部敏感 ...
- NVIDIA GPUs上深度学习推荐模型的优化
NVIDIA GPUs上深度学习推荐模型的优化 Optimizing the Deep Learning Recommendation Model on NVIDIA GPUs 推荐系统帮助人在成倍增 ...
- 深度学习之卷积神经网络CNN及tensorflow代码实例
深度学习之卷积神经网络CNN及tensorflow代码实例 什么是卷积? 卷积的定义 从数学上讲,卷积就是一种运算,是我们学习高等数学之后,新接触的一种运算,因为涉及到积分.级数,所以看起来觉得很复杂 ...
- 深度学习之卷积神经网络CNN及tensorflow代码实现示例
深度学习之卷积神经网络CNN及tensorflow代码实现示例 2017年05月01日 13:28:21 cxmscb 阅读数 151413更多 分类专栏: 机器学习 深度学习 机器学习 版权声明 ...
- AI - 深度学习之美十四章-概念摘要(8~14)
原文链接:https://yq.aliyun.com/topic/111 本文是对原文内容中部分概念的摘取记录,可能有轻微改动,但不影响原文表达. 08 - BP算法双向传,链式求导最缠绵 反向传播( ...
- AI - 深度学习之美十四章-概念摘要(1~7)
原文链接:https://yq.aliyun.com/topic/111 本文是对原文内容中部分概念的摘取记录,可能有轻微改动,但不影响原文表达. 01 - 一入侯门"深"似海,深 ...
- 深度学习VGG16模型核心模块拆解
原文连接:https://blog.csdn.net/qq_40027052/article/details/79015827 注:这篇文章是上面连接作者的文章.在此仅作学习记录作用. 如今深度学习发 ...
- 在排序模型方面,点评搜索也经历了业界比较普遍的迭代过程:从早期的线性模型LR,到引入自动二阶交叉特征的FM和FFM,到非线性树模型GBDT和GBDT+LR,到最近全面迁移至大规模深度学习排序模型。
https://mp.weixin.qq.com/s/wjgoH6-eJQDL1KUQD3aQUQ 大众点评搜索基于知识图谱的深度学习排序实践 原创: 非易 祝升 仲远 美团技术团队 前天
随机推荐
- Mono 支持LoongArch架构
近期,著名的.NET开源社区Mono正式支持LoongArch(龙架构),目前LoongArch64架构已出现在.NET社区主干分支上. 详细内容可以跟踪 https://github.com/mon ...
- python计算机视觉学习笔记——PIL库的用法
如果需要处理的原图及代码,请移步小编的GitHub地址 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/ComputerVisionPractice 这个 ...
- IIS 部署 Python 环境
1.安装IIS 勾选特殊CGI程序2.Python 环境 (环境变量配置)3.如果没有pip命令 先下载安装pip python setup.py install4.pip install wfast ...
- spring boot整合maybatis plus 的 文件生成代码
/** * 代码生成 */public class AutoGenerator_ { public static void main(String[] args) { AutoGenerator ge ...
- 009. gitlab备份和恢复
gitlab备份 #1. 创建添加配置文件 vim /etc/gitlab/gitlab.rb 文件尾添加: gitlab_reils['backup_path'] = '/data/backup/g ...
- centos os7 和redhat 7 安装yum源失败的解决办法
首先看我的报错 [Errno 14] curl#6 - "Could not resolve host: mirrors.aliyun.com; Unknown error" yu ...
- Java中try catch finally 关键字
异常处理中的几个常用关键字(try catch finally throw throws) 异常处理 java中提供一套异常处理机制,在程序发生异常时,可以执行预先设定好的处理程序, 执行完成后,程序 ...
- 史上最强 AI 翻译诞生了!拳打谷歌,脚踢 DeepL
CoT 推理范式 默认情况下,大语言模型通常是直接给出问题的最终答案,中间推理过程是隐含的.不透明的,无法发挥出大模型最极致的理解能力.如果你用它来充当翻译,可能效果和传统的机器翻译也差不了太多. 如 ...
- kettle从入门到精通 第二十八课 初识kettle-job
1.前面我们一起学习了,很多转换的知识,转换为批量的开发做铺垫,今天我们一起来学习下kettle job的知识. kettle job 常用的步骤如下图,有Start.转换.作业.成功等步骤. 2.下 ...
- win10系统,磁盘出现惊叹号和一把锁符号如何关闭去掉
如标题描述,图标如下 解决方法如下:搜索cmd -> 以管理员身份运行 输入命令如下 根据c,d,e盘符的文件量大小执行时间有些差异. manage-bde -off c:就可以解密c盘,成为b ...