我用Awesome-Graphs看论文:解读Naiad

前面通过文章《论文图谱当如是:Awesome-Graphs用200篇图系统论文打个样》向大家介绍了论文图谱项目Awesome-Graphs,并分享了Google的Pregel、OSDI'12的PowerGraph、SOSP'13的X-Stream。这次向大家分享Microsoft发表在SOSP'13的另一篇关于流处理系统论文Naiad,TimelyDataflow是它的开源实现。该论文促进了后续的流图系统的设计与创新,从其调度框架设计中也可以看到TuGraph Analytics调度器的影子。
对图计算技术感兴趣的同学可以多做了解,也非常欢迎大家关注和参与论文图谱的开源项目:
- Awesome-Graphs:https://github.com/TuGraph-family/Awesome-Graphs
- OSGraph:https://github.com/TuGraph-family/OSGraph
提前感谢给项目点Star的小伙伴,接下来我们直接进入正文!
摘要
Naiad是一个可执行有环数据流的分布式数据并行系统,提供了高吞吐的批处理、低延迟的流处理,以及迭代和增量计算的能力。
1. 介绍
支持特性:
- 循环结构化,支持反向边(feedback)。
- 有状态的数据流节点,支持无需全局协调的生产消费能力。
- 节点收齐特定轮次/迭代的输入后的通知机制。

2. 及时数据流
数据流图可以包含嵌套的循环结构,时间戳用于区分数据是由哪个轮次/迭代产生的。
2.1 图结构
及时数据流图包含输入/输出节点,输入节点从外部的生产者接受消息序列,输出节点将消息序列发送到外部消费者。
外部的生产者为每个消息打标了一个轮次(epoch),当没有消息需要输入时,会主动通知输入节点。
生产者也可以关闭输入节点,表示输入节点将不会再收到任何消息。
输出节点的消息也会打标这个轮次,同样当没有消息需要输出时,也会通知外部消费者。
及时数据流图里可以包含嵌套的循环上下文(loop contexts):
- 入口点(ingress vertex):数据流图的边进入循环上下文必须经过入口点,如I。
- 出口点(egress vertex):数据流图的边离开循环上下文必须经过出口点,如E。
- 反馈点(feedback vertex):循环上下文内必须包含反馈点,如F。

针对上图所表达的计算语义解释:

关键概念:逻辑时间戳(logical timestamp):
- e:消息的轮次。
- k:循环嵌套的深度。
- c:向量,每层循环的迭代次数。

逻辑时间戳变化规则:

- 经过入口点:c增加一个维度,初始化为0,表示循环开始。
- 经过反馈点:c的最后一个维度+1,表示循环次数累计。
- 经过出口点:c的最后一个维度提出,恢复成与入口点一致。
逻辑时间戳大小比较,t1=(e1, <c1, ..., cm>),t2=(e2, <c1, ..., cn>):
- 条件1:整数比较,e1 < e2。
- 条件2:字符串比较,c1 + ... + cm < c1 + ... + cn。
2.2 节点计算
数据流的节点可以接收、发送带逻辑时间戳的消息(message),以及通知(notification)。
每个节点v实现两个回调函数:
- v.OnRecieve(Edge e, Message m, Timestamp t):接收消息。
- v.OnNotify(Timestamp t):接收通知。
并可以调用系统提供的两个函数:
- this.SendBy(Edge e, Message m, Timestamp t):发送消息。
- this.NotifyAt(Timestamp t):发送通知。
对于数据流边e=(u, v),u.SendBy将触发v.OnRecieve,u.NotifyAt将触发v.onNotify。
数据流系统保证v.OnNotify(t)一定发生在v.OnRecieve(e, m, t')之后,其中t' < t,即保证处理完所有t之前的消息后再处理通知,以让节点具备机会清理t之前的工作状态。
这种机制保证了消息处理不会发生时光回溯(backwards in time)。
如下示例代码描述了一个双出的数据流节点实现distinct、count算子的逻辑。
class DistinctCount<S,T> : Vertex<T>
{
Dictionary<T, Dictionary<S,int>> counts;
void OnRecv(Edge e, S msg, T time)
{
if (!counts.ContainsKey(time)) {
counts[time] = new Dictionary<S,int>();
this.NotifyAt(time);
}
if (!counts[time].ContainsKey(msg)) {
counts[time][msg] = 0;
this.SendBy(output1, msg, time);
}
counts[time][msg]++;
}
void OnNotify(T time)
{
foreach (var pair in counts[time])
this.SendBy(output2, pair, time);
counts.Remove(time);
}
}
2.3 实现及时数据流
数据流处理受限于未处理的事件(events:消息、通知)和数据流图的结构。
关键概念:pointstamp:

- u.SendBy(e, m, t):生成pointstamp (t, e)。
- u.NotifyAt(t):生成pointstamp (t, v)。
单线程调度器实现:
- 维护一个激活pointstamp(active pointstamp) 集合,集合大小至少为1。对于每个pointstamp,有两个计数器:
- OC(occurrence count):未完成的pointstamp数。
- PC(precursor count):上游激活的pointstamp数。
- 系统初始化时,为输入节点生成第一个pointstamp,其中t=e,OC=1,PC=0。当e完成后,继续生成t=e+1的pointstamp。
- 当激活pointstamp p时,初始化PC为上游所有激活的pointstamp数,并递增下游节点所有pointstamp的PC值。
- 当OC[p]=0时,从active集合删除p,并递减下游节点所有pointstamp的PC值。
- 当PC[p]=0时,表示上游没有激活的pointstamp影响到p,则称p是frontier,调度器会把所有通知发送给frontier。
OC的计算规则为:

3. 分布式实现
- Naiad集群包含多个进程,每个进程包含多个worker,worker管理数据流节点的一个分区。
- worker之间通过本地的共享内存或者远程TCP连接交换消息。
- 进程遵循分布式进度追踪协议(Progress Tracking Protocol),用于协调通知的分发。

3.1 数据并行
- 逻辑数据流图:stages+connectors。
- connectors包含一个分区函数。
- 运行时逻辑数据流图被展开为物理数据流图,stage被替换为一组节点,connectors被替换为一组边。
3.2 Workers
- 分发消息优先于分发通知。
- 分发策略多样,如基于最早的pointstamp分发降低端到端延迟。
- worker使用共享队列进行通信。
- 如果分发的目标节点在同一个worker,那么SendBy会直接调用目标节点的OnRecieve。
- 如果存在环则需要强制进入队列,或者控制递归深度避免系统过载。
3.3 分布式进度追踪
- 每个worker维护各自的状态,通过广播OC进行状态共享。
- 优化手段:
- 使用映射的pointstamp实现进度跟踪,以降低并发冲突和更新规模。
- 更新广播前先进行本地聚合。
3.4 错误容忍和可用性
- Checkpoint和Restore接口。
3.5 预防抖动
- 网络。
- 数据结构竞争。
- 垃圾回收。
4. 使用Naiad写程序
5. 性能评估
6. 现实应用
- 批量迭代图计算
- 批量迭代机器学习
- 流式无环计算
- 流式迭代图分析
7. 总结
Naiad通过允许程序按需协调,支持了混合的同步+异步计算。
我用Awesome-Graphs看论文:解读Naiad的更多相关文章
- 论文解读《The Emerging Field of Signal Processing on Graphs》
感悟 看完图卷积一代.二代,深感图卷积的强大,刚开始接触图卷积的时候完全不懂为什么要使用拉普拉斯矩阵( $L=D-W$),主要是其背后的物理意义.通过借鉴前辈们的论文.博客.评论逐渐对图卷积有了一定的 ...
- 论文解读(MGAE)《MGAE: Masked Autoencoders for Self-Supervised Learning on Graphs》
论文信息 论文标题:MGAE: Masked Autoencoders for Self-Supervised Learning on Graphs论文作者:Qiaoyu Tan, Ninghao L ...
- 论文解读(ValidUtil)《Rethinking the Setting of Semi-supervised Learning on Graphs》
论文信息 论文标题:Rethinking the Setting of Semi-supervised Learning on Graphs论文作者:Ziang Li, Ming Ding, Weik ...
- zz扔掉anchor!真正的CenterNet——Objects as Points论文解读
首发于深度学习那些事 已关注写文章 扔掉anchor!真正的CenterNet——Objects as Points论文解读 OLDPAN 不明觉厉的人工智障程序员 关注他 JustDoIT 等 ...
- [论文解读] 阿里DIEN整体代码结构
[论文解读] 阿里DIEN整体代码结构 目录 [论文解读] 阿里DIEN整体代码结构 0x00 摘要 0x01 文件简介 0x02 总体架构 0x03 总体代码 0x04 模型基类 4.1 基本逻辑 ...
- 《Stereo R-CNN based 3D Object Detection for Autonomous Driving》论文解读
论文链接:https://arxiv.org/pdf/1902.09738v2.pdf 这两个月忙着做实验 博客都有些荒废了,写篇用于3D检测的论文解读吧,有理解错误的地方,烦请有心人指正). 博客原 ...
- 注意力论文解读(1) | Non-local Neural Network | CVPR2018 | 已复现
文章转自微信公众号:[机器学习炼丹术] 参考目录: 目录 0 概述 1 主要内容 1.1 Non local的优势 1.2 pytorch复现 1.3 代码解读 1.4 论文解读 2 总结 论文名称: ...
- 论文解读丨基于局部特征保留的图卷积神经网络架构(LPD-GCN)
摘要:本文提出一种基于局部特征保留的图卷积网络架构,与最新的对比算法相比,该方法在多个数据集上的图分类性能得到大幅度提升,泛化性能也得到了改善. 本文分享自华为云社区<论文解读:基于局部特征保留 ...
- CVPR2020 论文解读:少点目标检测
CVPR2020 论文解读:具有注意RPN和多关系检测器的少点目标检测 Few-Shot Object Detection with Attention-RPN and Multi-Relation ...
- 图像分类:CVPR2020论文解读
图像分类:CVPR2020论文解读 Towards Robust Image Classification Using Sequential Attention Models 论文链接:https:// ...
随机推荐
- NOIP模拟63
T1 电压机制 解题思路 先找出这个图的一个生成树,然后没有称为树边的边就都是返祖边了. 对于一个边是合法的当且仅当它属于所有的奇数环并且不属于任何一个偶数环. 可以利用树上差分进行修改,更改一个返祖 ...
- 2D 3D 景深 动画 阴影
2D 二维的平面空间,让元素在X轴或者Y轴进行变化 2D里面的功能函数 2D-位移 2D-旋转 2D-缩放 2D-倾斜 变形属性 transform:: 位移:transform:translate( ...
- C#.NET 微信上传电子小票
HttpWebRequest 时,不认图片的Content-Type.Content-Type 实际是有传的. 报错内容:{"code":"PARAM_ERROR&quo ...
- window10 yapi安装 swagger配置 及 Error: getaddrinfo ENOTFOUND yapi.demo.qunar.com解决
node下载https://nodejs.org/download/release/v12.18.3/mongodb下载https://www.mongodb.com/try/download/ent ...
- Apollo quick start SampleApp demo Java
<!--配置中心--> <dependency> <groupId>com.ctrip.framework.apollo</groupId> <a ...
- Unity中使用ProtocolBuffer
Unity中使用ProtocolBuffer unityProtocolBufferUnity ProtocolBuggerC# ProtocolBuffer Unity中使用ProtocolBuff ...
- [flask]统一API响应格式
前言 在设计API返回内容时,通常需要与前端约定好API返回响应体内容的格式.这样方便前端进行数据反序列化时相应的解析处理,也方便其它服务调用.不同公司有不同的响应内容规范要求,这里以常见的JSON响 ...
- 国内外公共 DNS调研
结论 国内可以在以下DNS选择:114DNS.阿里DNS.(阿里请联系我,给我广告费^_^) 国外可以在以下DNS选择:谷歌DNS.1.1.1.1 DNS.Cisco Umbrella DNS. 国内 ...
- 2024-06-26:用go语言,给定一个长度为n的数组nums和一个正整数k, 找到数组中所有相差绝对值恰好为k的子数组, 并返回这些子数组中元素之和的最大值。 如果找不到这样的子数组,返回0。 输
2024-06-26:用go语言,给定一个长度为n的数组nums和一个正整数k, 找到数组中所有相差绝对值恰好为k的子数组, 并返回这些子数组中元素之和的最大值. 如果找不到这样的子数组,返回0. 输 ...
- Java助力加固Excel文件,保障数据安全
前言 Excel文件保护是常用的一种功能,文件保护主要有三种: 添加密码,如果没有密码不允许打开文件. 添加密码,如果没有密码,不能修改文件,但可以打开,只读以及另存文件. 只读推荐,通常推荐打开Ex ...