【长文】带你搞明白Redis
本文使用第一人称来介绍Redis
一、概述
Redis,英文全称是Remote Dictionary Server(远程字典服务),是一个开源的使用ANSI C语言编写、支持网络、可基于内存亦可持久化的日志型、Key-Value数据库,并提供多种语言的API。
与MySQL数据库不同的是,Redis的数据是存在内存中的。它的读写速度非常快,每秒可以处理超过10万次读写操作。因此redis被广泛应用于缓存,另外,Redis也经常用来做分布式锁。除此之外,Redis支持事务、持久化、LUA 脚本、LRU 驱动事件、多种集群方案。

提及我的诞生,我与关系数据库MySQL之间有着不解之缘。在我尚未降临这个世界之前,MySQL历经艰辛,伴随着互联网的飞速发展,它所承载的数据量日益庞大,用户请求也如潮水般汹涌而至。每一次的用户请求,都化作了对它无尽的读写挑战,使得MySQL备受煎熬。特别是在“双11”、“618”这样的全民购物狂欢节,对MySQL而言,无疑是难熬的考验时刻。
后来,MySQL向我透露了一个秘密。它告诉我,其实大多数的用户请求都是读取操作,而且往往都是对同一数据的反复查询,这导致它不得不花费大量时间进行磁盘I/O操作,这无疑是一种巨大的资源浪费。
有人开始深思,是否可以借鉴CPU的工作原理,为数据库也添加一个缓存机制呢?于是,我便应运而生,踏上了这个世界的舞台。
自诞生之初,我便与MySQL结下了深厚的友谊。我们携手并肩,共同出现在后端服务器的舞台上。每当应用程序需要从MySQL查询数据时,它们会首先在我这里进行登记。当再次需要这些数据时,它们会首先向我发出请求。如果我这里有它们所需的数据,它们便无需再劳烦MySQL;若我这里没有,它们才会转向MySQL寻求帮助。
如此,我便成为了MySQL的得力助手,与它共同应对着日益增长的数据挑战。我们携手前行,共同书写着数据库世界的辉煌篇章。

二、支持的数据结构
大多数小伙伴都知道,为了方便使用,我支持以下这五种基本类型:
- String(字符串)
- Hash(哈希)
- List(列表)
- Set(集合)
- zset(有序集合)

string
字符串最基础的数据结构。字符串类型的值实际可以是字符串(简单的字符串、复杂的字符串(例如JSON、XML))、数字 (整数、浮点数),甚至是二进制(图片、音频、视频),但是值最大不能超过512MB。
字符串主要有以下几个典型使用场景:
- 缓存功能
- 计数
- 共享Session
- 限速
hash
哈希类型是指键值本身又是一个键值对结构。
哈希主要有以下典型应用场景:
- 缓存用户信息
- 缓存对象
list
列表(list)类型是用来存储多个有序的字符串。列表是一种比较灵活的数据结构,它可以充当栈和队列的角色

列表主要有以下几种使用场景:
- 消息队列
- 文章列表
set
集合(set)类型也是用来保存多个的字符串元素,但和列表类型不一 样的是,集合中不允许有重复元素,并且集合中的元素是无序的。
集合主要有如下使用场景:
- 标签(tag)
- 共同关注
sorted set
有序集合中的元素可以排序。但是它和列表使用索引下标作为排序依据不同的是,它给每个元素设置一个权重(score)作为排序的依据。
有序集合主要应用场景:
- 用户点赞统计
- 用户排序
我还有三种特殊的数据结构类型
- Geospatial
- Hyperloglog
- Bitmap
因为我把登记的数据都记录在内存中,不用去执行慢如蜗牛的I/O操作,所以找我要比找MySQL要省去了不少的时间呢。
可别小瞧这简单的一个改变,我可为MySQL减轻了不小的负担!随着程序的运行,我缓存的数据越来越多,有相当部分时间我都给它挡住了用户请求,这一下它可乐得清闲自在了!
有了我的加入,网络服务的性能提升了不少,这都归功于我为数据库挡下了不少的事儿。

三、缓存过期 && 缓存淘汰
不过很快我发现事情不妙了,我缓存的数据都是在内存中,可是就算是在服务器上,内存的空间资源还是很有限的,不能无节制的这么存下去,我得想个办法,不然吃枣药丸。
不久,我想到了一个办法:给缓存内容设置一个超时时间,具体设置多长交给应用程序们去设置,我要做的就是把过期了的内容从我里面删除掉,及时腾出空间就行了。

超时时间有了,我该在什么时候去干这个清理的活呢?
最简单的就是定期删除,我决定100ms就做一次,一秒钟就是10次!
我清理的时候也不能一口气把所有过期的都给删除掉,我这里面存了大量的数据,要全面扫一遍的话那不知道要花多久时间,会严重影响我接待新的客户请求的!

时间紧任务重,我只好随机选择一部分来清理,能缓解内存压力就行了。
就这样过了一段日子,我发现有些个键值运气比较好,每次都没有被我的随机算法选中,每次都能幸免于难,这可不行,这些长时间过期的数据一直霸占着不少的内存空间!气抖冷!
我眼里可揉不得沙子!于是在原来定期删除的基础上,又加了一招:
那些原来逃脱我随机选择算法的键值,一旦遇到查询请求,被我发现已经超期了,那我就绝不客气,立即删除。
这种方式因为是被动式触发的,不查询就不会发生,所以也叫惰性删除!
可是,还是有部分键值,既逃脱了我的随机选择算法,又一直没有被查询,导致它们一直逍遥法外!而于此同时,可以使用的内存空间却越来越少。

而且就算退一步讲,我能够把过期的数据都删除掉,那万一过期时间设置的很长,还没等到我去清理,内存就吃满了,一样要吃枣药丸,所以我还得想个办法。
我苦思良久,终于憋出了个大招:内存淘汰策略,这一次我要彻底解决问题!
我提供了8种淘汰策略供应用程序选择,用于我遇到内存不足时该如何决策:
- volatile-lru:从已设置过期时间的数据集中挑选最近最少使用的数据淘汰。
allkeys-lru:从数据集中挑选最近最少使用的数据淘汰
volatile-lfu:从已设置过期时间的数据集挑选使用频率最低的数据淘汰。
allkeys-lfu:从数据集中挑选使用频率最低的数据淘汰。
volatile-ttl:从已设置过期时间的数据集中挑选将要过期的数据淘汰。
volatile-random:从已设置过期时间的数据集中任意选择数据淘汰。
allkeys-random:从数据集(server.db[i].dict)中任意选择数据淘汰
no-enviction(驱逐):禁止驱逐数据,这也是默认策略。意思是当内存不足以容纳新入数据时,新写入操作就会报错,请求可以继续进行,线上任务也不能持续进行,采用no-enviction策略可以保证数据不被丢失。
有了上面几套组合拳,我再也不用担心过期数据多了把空间撑满的问题了~
我为了避免频繁的触发淘汰策略,每次会淘汰掉一批数据,淘汰的数据的大小其实是和置换的大小来确定的,如果置换的数据量大,淘汰的肯定也多。
客户端执行一条新命令,导致数据库需要增加数据(比如set key value)我会检查内存使用,如果内存使用超过max memory,我就会按照置换策略删除一些key
四、缓存穿透 && 布隆过滤器
我的日子过的还挺舒坦,不过MySQL大哥就没我这么舒坦了,有时候遇到些烦人的请求,查询的数据不存在,MySQL就要白忙活一场!不仅如此,因为不存在,我也没法缓存啊,导致同样的请求来了每次都要去让MySQL白忙活一场。我作为缓存的价值就没得到体现啦!这就是人们常说的缓存穿透。

这一来二去,MySQL大哥忍不住了:“唉,兄弟,能不能帮忙想个办法,把那些明知道不会有结果的查询请求给我挡一下”
这时我想到了我的另外一个好朋友:布隆过滤器

我这位朋友别的本事没有,就擅长从超大的数据集中快速告诉你查找的数据存不存在(悄悄告诉你,我的这位朋友有一点不靠谱,它告诉你存在的话不能全信,其实有可能是不存在的,不过它他要是告诉你不存在的话,那就一定不存在,同时他也不支持删除元素)。它是一个连续的数据结构,每个存储位存储都是一个bit,即0或者1, 来标识数据是否存在。

五、缓存击穿 && 缓存雪崩
这之后过了一段时间太平日子,直到那一天···
有一次,MySQL那家伙正优哉游哉的摸鱼,突然一大堆请求给他怼了过去,给他打了一个措手不及。
一阵忙活之后,MySQL怒气冲冲的找到了我,“兄弟,咋回事啊,怎么一下子来的这么猛”

我查看了日志,赶紧解释到:“大哥,实在不好意思,刚刚有一个热点数据到了过期时间,被我删掉了,不巧的是随后就有对这个数据的大量查询请求来了,我这里已经删了,所以请求都发到你那里来了”
“你这干的叫啥事,下次注意点啊”,MySQL大哥一脸不高兴的离开了。
这一件小事我也没怎么放在心上,随后就抛之脑后了,却没曾想几天之后竟捅了更大的篓子。
那一天,又出现了大量的网络请求发到了MySQL那边,比上一次的规模大得多,MySQL大哥一会儿功夫就给干趴下了好几次!
等了好半天这一波流量才算过去,MySQL才缓过神来。
“老弟,这一次又是什么原因?”,MySQL大哥累的没了力气。
“这一次比上一次更不巧,这一次是一大批数据几乎同时过了有效期,然后又发生了很多对这些数据的请求,所以比起上一次这规模更大了”

MySQL大哥听了眉头一皱,“那你倒是想个办法啊,三天两头折磨我,这谁顶得住啊?”
“其实我也很无奈,这个时间也不是我设置的,要不我去找应用程序说说,让他把缓存过期时间设置的均匀一些?至少别让大量数据集体失效”
“走,咱俩一起去”
后来,我俩去找应用程序商量了,不仅把键值的过期时间随机了一下,还设置了热点数据永不过期,这个问题缓解了不少。哦对了,我们还把这两次发生的问题分别取了个名字:缓存击穿和缓存雪崩。
我们终于又过上了舒适的日子···
六、我可以用来干什么

缓存
这是我应用最广泛地方,基本所有的Web应用都会使用我作为缓存,来降低数据源压力,提高响应速度。

计数器
我天然支持计数功能,而且计数性能非常好,可以用来记录浏览量、点赞量等等。
排行榜
我提供了列表和有序集合数据结构,合理地使用这些数据结构可以很方便地构建各种排行榜系统。
社交网络
赞/踩、粉丝、共同好友/喜好、推送、下拉刷新。
消息队列
我提供了发布订阅功能和阻塞队列的功能,可以满足一般消息队列功能。
分布式锁
分布式环境下,利用我实现分布式锁,也是我常见的应用。
七、参考文章
.NET Core部署到linux(CentOS)最全解决方案,常规篇
.NET Core部署到linux(CentOS)最全解决方案,进阶篇(Supervisor+Nginx)
.NET Core部署到linux(CentOS)最全解决方案,高阶篇(Docker+Nginx 或 Jexus)
.NET Core部署到linux(CentOS)最全解决方案,入魔篇(使用Docker+Jenkins实现持续集成、自动化部署)
一网打尽,一文讲通虚拟机VirtualBox及Linux使用
一文讲通.NET Core部署到Windows IIS最全解决方案
一网打尽,一文讲通虚拟机VirtualBox及Linux使用
【长文】带你搞明白Redis的更多相关文章
- 一文让你明白Redis主从同步
今天想和大家分享有关 Redis 主从同步(也称「复制」)的内容. 我们知道,当有多台 Redis 服务器时,肯定就有一台主服务器和多台从服务器.一般来说,主服务器进行写操作,从服务器进行读操作. 那 ...
- 一篇文章带你整明白HTTP缓存知识
最近看了很多关于缓存的文章, 每次看完,看似明白但是实际还是没明白,这次总算搞明白协商缓存是怎么回事了 首先,服务器缓存分强制缓存和协商缓存(也叫对比缓存) 强制缓存一般是服务端在请求头携带字段Exp ...
- 相机拍的图,电脑上画的图,word里的文字,电脑屏幕,手机屏幕,相机屏幕显示大小一切的一切都搞明白了!
相机拍的图,电脑上画的图,word里的文字,电脑屏幕,手机屏幕,相机屏幕显示大小一切的一切都搞明白了! 先说图片X×dpi=点数dotX是图片实际尺寸,简单点,我们只算图片的高吧,比如说拍了张图片14 ...
- 彻底搞明白find命令的-mtime参数的含义【转载】
转自: 彻底搞明白find命令的-mtime参数的含义-goolen-ITPUB博客http://blog.itpub.net/23249684/viewspace-1156932/ 以前一直没有弄明 ...
- LIN、CAN、FlexRay、MOST,三分钟搞明白四大汽车总线
LIN.CAN.FlexRay.MOST,三分钟搞明白四大汽车总线 2016-09-21 13:09 汽车中的电子部件越来越多,光是ECU就有几十个,这么多的电子单元都要进行信息交互.传统的点对点通信 ...
- docker 构建带健康检查的redis镜像
=============================================== 2018/11/5_第1次修改 ccb_warlock == ...
- [转帖]Nginx为什么高效?一文搞明白Nginx核心原理
Nginx为什么高效?一文搞明白Nginx核心原理 咔咔侃技术 2019-09-06 15:37:00 https://www.toutiao.com/a6733057587622707724/ Ng ...
- vue-router 路由元信息 终于搞明白了路由元信息是个啥了
vue-router 路由元信息:https://blog.csdn.net/wenyun_kang/article/details/70987840 终于搞明白了路由元信息是个啥了:https:// ...
- 终于搞明白Unicode,ASCII,UTF8,UCS2编码是啥了
[本文版权归微信公众号"代码艺术"(ID:onblog)所有,若是转载请务必保留本段原创声明,违者必究.若是文章有不足之处,欢迎关注微信公众号私信与我进行交流!] 前言 本文起因于 ...
- 【项目实践】一文带你搞定Spring Security + JWT
以项目驱动学习,以实践检验真知 前言 关于认证和授权,R之前已经写了两篇文章: [项目实践]在用安全框架前,我想先让你手撸一个登陆认证 [项目实践]一文带你搞定页面权限.按钮权限以及数据权限 在这两篇 ...
随机推荐
- ElasticSearch IK 分词器快速上手
简介: ElasticSearch IK 分词器快速上手 一.安装 IK 分词器 1.分配伪终端 我的 ElasticSearch 是使用 Docker 安装的,所以先给容器分配一个伪终端.之后就可 ...
- dotnet OpenXML 读取 PPT 形状边框定义在 Style 的颜色画刷
本文来和大家聊聊在 PPT 形状使用了 Style 样式的颜色画刷读取方法 在开始之前,期望大家已了解如何在 dotnet 应用里面读取 PPT 文件,如果还不了解读取方法,请参阅 C# dotnet ...
- dotnet 使用 FormatterServices 的 GetUninitializedObject 方法在丢失 DLL 情况下能否执行
在 dotnet 里面,可以使用 FormatterServices 的 GetUninitializedObject 方法可以实现只创建对象,而不调用对象的构造函数方法.而如果在使用此方法时,存在了 ...
- dotnet C# 调用委托的 GetInvocationList 的对象分配
本文也叫跟着 Stephen Toub 大佬学性能优化系列,这是我从 Stephen Toub 大佬给 WPF 框架做性能优化学到的知识,在热路径下,也就是频繁调用的模块,如果调用了委托的 GetIn ...
- Gradle8.4构建SpringBoot多模块项目
Gradle8.4构建SpringBoot多模块项目 一.基本 1.版本 这个版本是Jdk8最后一个SpringBoot版本 软件 版本 Gradle 8.4 SpringBoot 2.7.15 JD ...
- SpringBoot项目预加载数据——ApplicationRunner、CommandLineRunner、InitializingBean 、@PostConstruct区别
0.参考.业务需求 参考: https://www.cnblogs.com/java-chen-hao/p/11835120.html#_label1 https://zhuanlan.zhihu.c ...
- 14、web 中间件加固-Tomcat 加固
1.用户配置 如果不需要控制台管理,请更改控制台用户文件注销账号信息:如果需要,请更改账户信息 修改 tomcat/conf/tomcat-user.xml 文件 注释或修改如下信息 <role ...
- SpringBoot-EasyExcel导出数据(带图片)
前言 EasyExcel 是阿里巴巴开源的一个Java操作Excel的技术,和EasyPoi一样是封装Poi的工具类. 但是不同的地方在于,在EasyExcel中解决了Poi技术读取大批量数据耗费内存 ...
- vue特殊atribute-is
1.解决dom内模板限制 有些 HTML 元素,诸如 <ul>.<ol>.<table> 和 <select>,对于哪些元素可以出现在其内部是有严格限制 ...
- 全网首一份!你最需要的PPTP MS-CHAP V2 挑战响应编程模拟计算教程!代码基于RFC2759,附全部源码!
本文基于网络密码课上的实验 本来想水一水就过去,代码就网上找找,不行就GPT写,但是!一份都找不到,找到的代码都是跑不了的,总会是就是乱七八糟.所以准备认真的写一份. 代码编译成功的前提是要预先装好o ...