聊聊魔塔社区MGeo模型的部署与运行
从现今与今后的发展来看,单一的业务不再仅仅依靠于传统的技术开发,而是应该结合AI模型来应用、实践。只有这样,才能更数智化,更高效化,更贴合时代的发展。
魔塔 社区就类似国外的Hugging Face,是一个模型即服务的运行平台。在这个平台上运行着很多的大模型示例,网站直接提供了试运行的环境,也可以下载代码到本地部署运行或是在阿里云的PAI平台运行。
pytorch环境搭建
我是跟着 Pytorch-Gpu环境配置 博文一步一步搭建起来的。唯一不同的是,我不是基于Anaconda虚拟环境搭建,而是直接在本地环境部署pytorch与CUDA。
开着西部世界的VPN,下载pytorch与CUDA会快一些,在本地下载好了pytorch的whl文件后,直接在下载目录中打开cmd窗口,使用pip install xxxx.whl安装pytorch即可。
RaNER 模型搭建与运行
进入魔塔官网,找到MGeo模型,首先必须要下载modelscope包。在MGeo的模型介绍中,以及有详细的命令说明,如下:
# GPU版本
conda create -n py37testmaas python=3.7
pip install cryptography==3.4.8 tensorflow-gpu==1.15.5 torch==1.11.0 torchvision==0.12.0 torchaudio==0.11.0
pip install "modelscope[nlp]" -f https://modelscope.oss-cn-beijing.aliyuncs.com/releases/repo.html
但是对于我来说,并没有用到conda虚拟环境,所以我只是运行了最后的pip命令,如下:
pip install "modelscope[nlp]" -f https://modelscope.oss-cn-beijing.aliyuncs.com/releases/repo.html
命令输出内容如下:

最好是开着VPN执行命令,否则会很慢。下载完后有一个报错,可以忽略,最后我成功安装的组件有:

如此,便完成了modelscope包的安装。然后拷贝示例代码在本地运行即可,示例代码如下:
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
task = Tasks.token_classification
model = 'damo/mgeo_geographic_elements_tagging_chinese_base'
inputs = '浙江省杭州市余杭区阿里巴巴西溪园区'
pipeline_ins = pipeline(
task=task, model=model)
print(pipeline_ins(input=inputs))
# 输出
# {'output': [{'type': 'prov', 'start': 0, 'end': 3, 'span': '浙江省'}, {'type': 'city', 'start': 3, 'end': 6, 'span': '杭州市'}, {'type': 'district', 'start': 6, 'end': 9, 'span': '余杭区'}, {'type': 'poi', 'start': 9, 'end': 17, 'span': '阿里巴巴西溪园区'}]}
运行过程中,也会有一些提示,还是很有意思的,可以看看.

最后的结果也是正常的输出了,对于输出结果的解释,我就不多说,可以看API文档解释。我换成其它地址继续测试:

总结
最后说一下自己的实际感受。首先这个MGEO的AI模型,在我上家公司我主导做的项目就用到了,当时是花钱在阿里云的 地址标准化 产品上购买使用,用于在实际的项目中根据客户输入的地址提取省市区并再次输入到目标网站。当时一开始想的是自己找开源的库来实现,后来发现有点难,因为客户输入的辨识度太低,可能性太多,而且我们不能规范客户的输入(主要是历史数据太多)。因此当时找了好多方案,最后发现阿里云有这个支持,就花钱购买调用解决问题。从现在来看,其实整个模型与应用完全可以自己搭建部署起来,省钱又能自我管控,而且还能二次开发,毕竟现在以及前几年做AI算法的人还是不少的(当时我们公司也有少数做AI相关的人,自己现在也算是个半吊子水平,看得懂也能改一点),唉,总的来说还是当时的能力限制了,还是得多学多思考,尤其是现在AI模型的普遍性与高速发展,程序猿学习成本与门槛降低很多很多。
聊聊魔塔社区MGeo模型的部署与运行的更多相关文章
- 139、TensorFlow Serving 实现模型的部署(二) TextCnn文本分类模型
昨晚终于实现了Tensorflow模型的部署 使用TensorFlow Serving 1.使用Docker 获取Tensorflow Serving的镜像,Docker在国内的需要将镜像的Repos ...
- 138、Tensorflow serving 实现模型的部署
将Tensorflow模型部署成Restful接口 下面是实现过程,整个操作都是在Linux上面实现的,因为Tensorflow Serving 目前还只支持Linux 这个意义真的是革命性的,因为从 ...
- 百度大脑EasyEdge端模型生成部署攻略
EasyEdge是百度基于Paddle Mobile研发的端计算模型生成平台,能够帮助深度学习开发者将自建模型快速部署到设备端.只需上传模型,最快2分种即可生成端计算模型并获取SDK.本文介绍Easy ...
- 三分钟快速上手TensorFlow 2.0 (下)——模型的部署 、大规模训练、加速
前文:三分钟快速上手TensorFlow 2.0 (中)——常用模块和模型的部署 TensorFlow 模型导出 使用 SavedModel 完整导出模型 不仅包含参数的权值,还包含计算的流程(即计算 ...
- 三分钟快速上手TensorFlow 2.0 (中)——常用模块和模型的部署
本文学习笔记参照来源:https://tf.wiki/zh/basic/basic.html 前文:三分钟快速上手TensorFlow 2.0 (上)——前置基础.模型建立与可视化 tf.train. ...
- 二手车价格预测 | 构建AI模型并部署Web应用 ⛵
作者:韩信子@ShowMeAI 数据分析实战系列:https://www.showmeai.tech/tutorials/40 机器学习实战系列:https://www.showmeai.tech/t ...
- 【实战】yolov8 tensorrt模型加速部署
[实战]yolov8 tensorrt模型加速部署 TensorRT-Alpha基于tensorrt+cuda c++实现模型end2end的gpu加速,支持win10.linux,在2023年已经更 ...
- Windows10下yolov8 tensorrt模型加速部署【实战】
Windows10下yolov8 tensorrt模型加速部署[实战] TensorRT-Alpha基于tensorrt+cuda c++实现模型end2end的gpu加速,支持win10.linux ...
- Win10下yolov8 tensorrt模型加速部署【实战】
Win10下yolov8 tensorrt模型加速部署[实战] TensorRT-Alpha基于tensorrt+cuda c++实现模型end2end的gpu加速,支持win10.linux,在20 ...
- Xamarin 跨移动端开发系列(01) -- 搭建环境、编译、调试、部署、运行
如果是.NET开发人员,想学习手机应用开发(Android和iOS),Xamarin 无疑是最好的选择,编写一次,即可发布到Android和iOS平台,真是利器中的利器啊!好了,废话不多说,就开始吧, ...
随机推荐
- 26194136 psu安装步骤
26194136 psu安装步骤 1.拷贝 安装包p26194136_112040_MSWIN-x86-64.zip到 目录 2..关闭rac crsctl stop crs srvctl stop ...
- 预处理器 Less 的十个语法
Less 是一门 CSS 预处理语言,它扩充了 CSS 语言,增加了诸如变量.混合(mixin).函数等功能,让 CSS 更易维护.方便制作主题.扩充. 不过浏览器只能识别 CSS 语言,所以 Les ...
- 【go笔记】标准库-strconv
前言 标准库strconv提供了字符串类型与其他常用数据类型之间的转换. strconv.FormatX()用于X类型转字符串,如strconv.FormatFloat()用于浮点型转字符串. str ...
- DDD 架构分层,MQ消息要放到那一层处理?
作者:小傅哥 博客:https://bugstack.cn 沉淀.分享.成长,让自己和他人都能有所收获! 本文的宗旨在于通过简单干净实践的方式教会读者,使用 Docker 配置 RocketMQ 并在 ...
- typora使用教程&高级用法&Markdown
typora使用教程&高级用法&Markdown typora介绍 哇啦哇啦哇啦哇,,,,,,,,,,,,, 提示:小白看不懂的话,建议哔哩哔哩搜索"遇见狂神说", ...
- Prompt 指北:如何写好 Prompt,让 GPT 的回答更加精准
目录 1. 得亏 GPT 脾气好 2. 玩 GPT 得注意姿势 3. 指南指北指东指西 3.1 首先你得理解 GPT 是咋工作的 3.2 "Prompt 工程"走起 3.3 奇淫技 ...
- 电气工程师必学------CODESYS v3.5 入门学习笔记(一)
一.新建工程 打开软件新建工程,如图 此教程只是入门练习,所以这里一般情况下都是创建的Standard project,也就是标准工程.窗口下方可以设置工程名称与存放位置. 紧接着是选择设备与编译语言 ...
- 【接口自动化测试】Eolink Apilkit 安装部署,支持 Windows、Mac、Linux 等系统
Eolink Apikit 有三种客户端,可以依据自己的情况选择.三种客户端的数据是共用的,因此可以随时切换不同的客户端. 我们推荐使用新推出的 Apikit PC 客户端,PC 端拥有线上产品所有的 ...
- DHorse v1.4.0 发布,基于 k8s 的发布平台
版本说明 新增特性 提供Fabric8客户端操作k8s(预览)的功能,可以通过指定-Dkubernetes-client=fabric8参数开启: Vue.React应用增加Pnpm.Yarn的构建方 ...
- Ds100p -「数据结构百题」1~10
1.「一本通 4.6 例 1」营业额统计 原题来自:HNOI 2002 Tiger 最近被公司升任为营业部经理,他上任后接受公司交给的第一项任务便是统计并分析公司成立以来的营业情况. Tiger 拿出 ...