自然语言处理(NLP)常用开源工具总结(转)
..................................内容纯转发+收藏...................................
学习自然语言这一段时间以来接触和听说了好多开源的自然语言处理工具,在这里做一下汇总方便自己以后学习,其中有自己使用过的也有了解不是很多的,对于不甚了解的工具以后学习熟悉了会做更新的。
1.IKAnalyzer
IK Analyzer是一个开源的,基于Java语言开发的轻量级的中文分词工具包。从2006.12推出1.0版本开始,IK Analyzer已经推出了多个版本,当前最新版本为2012 u6,最初基于Luence,从3.0开始成为面向Java的公用分词组件,独立于Luence,下载地址为:http://code.google.com/p/ik-analyzer/。IK支持细粒度和智能分词两种切分模式,支持英文字母、数字、中文词汇等分词处理,兼容韩文、日文字符。可以支持用户自定义的词典,通过配置IKAnalyzer.cfg.xml文件来实现,可以配置自定义的扩展词典和停用词典。词典需要采用UTF-8无BOM格式编码,并且每个词语占一行。配置文件如下所示:
- <properties>
- <comment>IK Analyzer 扩展配置</comment>
- <!--用户可以在这里配置自己的扩展字典-->
- <entry key="ext_dict">ext.dic;</entry>
- <!--用户可以在这里配置自己的扩展停止词字典-->
- <entry key="ext_stopwords">stopword.dic;chinese_stopword.dic</entry>
- </properties>
IK部署很简单,只需要把IKAnalyzer2012_u6.jar部署于项目的lib中,同时将IKAnalyzer.cfg.xml文件以及词典文件置于src中,即可通过API的方式开发调用。
示例代码:
- /**
- * IK分词功能实现
- * @return
- */
- public String spiltWords(String srcString){
- StringBuffer wordsBuffer = new StringBuffer("");
- try{
- IKSegmenter ik=new IKSegmenter(new StringReader(srcString), true);
- Lexeme lex=null;
- while((lex=ik.next())!=null){
- // System.out.print(lex.getLexemeText()+" ");
- wordsBuffer.append(lex.getLexemeText()).append(" ");
- }
- }catch(Exception e){
- logger.error(e.getMessage());
- }
- return wordsBuffer.toString();
- }
IK简单、易于扩展,分词结果较好并且采用Java编写,因为我平时的项目以Java居多,所以是我平时处理分词的首选工具。
2.中科院ICTCLAS
ICTCLAS是由中科院计算所历经数年开发的分词工具,采用C++编写。最新版本命名为ICTCLAS2013,又名为NLPIR汉语分词系统,官网为:http://ictclas.nlpir.org/。主要功能包括中文分词、词性标注、命名实体识别、用户词典功能,同时支持GBK编码、UTF8编码、BIG5编码,新增微博分词、新词发现与关键词提取。可以可视化界面操作和API方式调用。
3.FudanNLP
FudanNLP主要是为中文自然语言处理而开发的工具包,也包含为实现这些任务的机器学习算法和数据集。FudanNLP及其包含数据集使用LGPL3.0许可证。
主要功能包括:
信息检索:文本分类,新闻聚类。
中文处理:中文分词,词性标注,实体名识别,关键词抽取,依存句法分析,时间短语识别。
结构化学习:在线学习,层次分类,聚类,精确推理。
工具采用Java编写,提供了API的访问调用方式。最新版本为FudanNLP-1.6.1,下载地址为:http://code.google.com/p/fudannlp/。
下载安装包后解压后,内容如下图所示:
在使用时将fudannlp.jar以及lib中的jar部署于项目中的lib里面。models文件夹中存放的模型文件,主要用于分词、词性标注和命名实体识别以及分词所需的词典;文件夹example中主要是使用的示例代码,可以帮助快速入门和使用;java-docs是API帮助文档;src中存放着源码;PDF文档中有着比较详细的介绍和自然语言处理基础知识的讲解。
初始运行程序时初始化时间有点长,并且加载模型时占用内存较大。在进行语法分析时感觉分析的结果不是很准确。
4.The Stanford Natural LanguageProcessing Group
Stanford NLP Group是斯坦福大学自然语言处理的团队,开发了多个NLP工具,官网网址为:http://nlp.stanford.edu/software/index.shtml。其开发的工具包括以下内容:
4.1 Stanford CoreNLP
采用Java编写的面向英文的处理工具,下载网址为:http://nlp.stanford.edu/software/corenlp.shtml。主要功能包括分词、词性标注、命名实体识别、语法分析等。
我曾经采用它进行英语单词的词性还原,具体应用详见文章《采用Stanford CoreNLP实现英文单词词形还原》。
4.2 Stanford Word Segmenter
采用CRF(条件随机场)算法进行分词,也是基于Java开发的,同时可以支持中文和Arabic,官方要求Java版本1.6以上,推荐内存至少1G。下载地址为http://nlp.stanford.edu/software/segmenter.shtml。
简单的示例程序:
- //设置分词器属性。
- Properties props = new Properties();
- //字典文件地址,可以用绝对路径,如d:/data
- props.setProperty("sighanCorporaDict", "data");
- //字典压缩包地址,可以用绝对路径
- props.setProperty("serDictionary","data/dict-chris6.ser.gz");
- //输入文字的编码;
- props.setProperty("inputEncoding", "UTF-8");
- props.setProperty("sighanPostProcessing", "true");
- //初始化分词器,
- CRFClassifier classifier = new CRFClassifier(props);
- //从持久化文件中加载分词器设置;
- classifier.loadClassifierNoExceptions("data/ctb.gz", props);
- // flags must be re-set after data is loaded
- classifier.flags.setProperties(props);
- //分词
- List words = classifier.segmentString("语句内容");
4.3 Stanford POS Tagger
采用Java编写的面向英文、中文、法语、阿拉伯语、德语的命名实体识别工具,下载地址为:http://nlp.stanford.edu/software/tagger.shtml。还没有接触过,需要以后学习研究。
4.4 Stanford Named Entity Recognizer
采用条件随机场模型的命名实体工具,下载地址为:http://nlp.stanford.edu/software/CRF-NER.shtml。还没有接触过,需要以后学习研究。
4.5 Stanford Parser
进行语法分析的工具,支持英文、中文、阿拉伯文和法语。下载地址为:http://nlp.stanford.edu/software/lex-parser.shtml。具体的使用介绍见《采用Stanford Parser进行中文语法解析》。
4.6 Stanford Classifier
采用Java编写的分类器,下载地址为:http://nlp.stanford.edu/software/classifier.shtml。还没有接触过,需要以后学习研究。
原文地址:http://blog.csdn.net/cuixianpeng/article/details/16288307
自然语言处理(NLP)常用开源工具总结(转)的更多相关文章
- NLP常用开源/免费工具
一些常见的NLP任务的开源/免费工具, *Computational Linguistics ToolboxCLT http://complingone.georgetown.edu/~linguis ...
- 自然语言处理NLP学习笔记二:NLP实战-开源工具tensorflow与jiagu使用
前言: NLP工具有人推荐使用spacy,有人推荐使用tensorflow. tensorflow:中文译作:张量(超过3维的叫张量)详细资料参考:http://www.tensorfly.cn/ J ...
- 曼孚科技:AI自然语言处理(NLP)领域常用的16个术语
自然语言处理(NLP)是人工智能领域一个十分重要的研究方向.NLP研究的是实现人与计算机之间用自然语言进行有效沟通的各种理论与方法. 本文整理了NLP领域常用的16个术语,希望可以帮助大家更好地理解 ...
- NLP开源工具
最近有人问我几次NLP有哪些开源工具,这里做个笔记.
- Java自然语言处理NLP工具包
1. Java自然语言处理 LingPipe LingPipe是一个自然语言处理的Java开源工具包.LingPipe目前已有很丰富的功能,包括主题分类(Top Classification).命名实 ...
- 自然语言处理NLP学习笔记一:概念与模型初探
前言 先来看一些demo,来一些直观的了解. 自然语言处理: 可以做中文分词,词性分析,文本摘要等,为后面的知识图谱做准备. http://xiaosi.trs.cn/demo/rs/demo 知识图 ...
- GitHub 开源工具整理
技术站点 Hacker News:非常棒的针对编程的链接聚合网站 Programming reddit:同上 MSDN:微软相关的官方技术集中地,主要是文档类 infoq:企业级应用,关注软件开发领域 ...
- 大数据分析系统Hadoop的13个开源工具
Hadoop是由Apache基金会开发的一个大数据分布式系统基础架构,最早版本是2003年原Yahoo!DougCutting根据Google发布的学术论文研究而来. 用户可以在不了解分布式底层细节的 ...
- 自然语言处理(NLP)
苹果语音助手Siri的工作流程: 听 懂 思考 组织语言 回答 这其中每一步骤涉及的流程为: 语音识别 自然语言处理 - 语义分析 逻辑分析 - 结合业务场景与上下文 自然语言处理 - 分析结果生成自 ...
随机推荐
- java流下载
@RequestMapping("/pluginDownload") public void pluginDownload(HttpServletResponse response ...
- HDU 2612 -Find a way (注重细节BFS)
主题链接:Find a Way 题目不难,前几天做,当时准备写双向BFS的,后来处理细节上出了点问题,赶上点事搁置了.今天晚上重写的,没用双向,用了两次BFS搜索,和双向BFS 道理差点儿相同.仅仅是 ...
- vistual studio 2012 安装失败,提示Microsoft Vistual Studio 2012 Devenv找不到元素,等错误信息
在安装vistual studio 2012过程中,出现安装失败,提示Microsoft Vistual Studio 2012 Devenv找不到元素,等错误信息 解决方法是更新相应的server补 ...
- SoC嵌入式软件架构设计II:否MMU的CPU虚拟内存管理的设计与实现方法
大多数的程序代码是必要的时,它可以被加载到内存中运行.手术后,可直接丢弃或覆盖其他代码.我们PC然在同一时间大量的应用,能够整个线性地址空间(除了部分留给操作系统或者预留它用),能够觉得每一个应用程序 ...
- 苹果新的编程语言 Swift 语言进阶(十二)--选项链
选项链是使用选项来查询和调用其属性.方法或下标的一个过程,假设选项包括一个值,则属性.方法.下标的查询和调用成功,否则,调用返回nil. 选项链能用在不论什么类型的选项来检查对其一个属性.方法.下标的 ...
- 【翻译自mos文章】SYS_OP_C2C 导致的全表扫描(fts)/全索引扫描
SYS_OP_C2C 导致的全表扫描(fts)/全索引扫描 參考原文: SYS_OP_C2C Causing Full Table/Index Scans (Doc ID 732666.1) 适用于: ...
- 【Heritrix基础教程2】Heritrix基本介绍
1.版本号说明 (1)最新的版本号:3.3.0 (2)最新release版本号:3.2.0 (3)重要历史版本号:1.14.4 3.1.0及之前的版本号:http://sourceforge.net/ ...
- C语言连接Oracle
原文:C语言连接Oracle 最近在搞C语言连接Oracle.DB2数据库,现把C连接Oracle的文章总结下: 用C语言连接ORACLE数据库.有两个思路和目的 思路一)本地环境:UBUNTU 7. ...
- June本地环境搭建
python-china.org论坛使用的June程序就是这货了,使用了Python Flask + SQLite + Node.js 的轻论坛,以后就打算拿这个学习了,如果可能,进行二次开发. Gi ...
- 《Shell十三问》笔记(上)
<shell十三问>是网中人前辈首发在CU论坛上对SHELL的一些整理,非常值得一读 注:笔记的标号非问题标号,而是知识点的标号.本篇笔记记录的是1-10问的知识点 (1)IFS:Shel ...