搞定KMP匹配算法
本文介绍了字符串匹配算法中的BF算法和KMP算法。本文中KMP算法介绍部分是关于KMP算法相关文章中最简洁的一篇文章之一。下一篇将继续介绍Horspool算法和BM算法。
现在我们用的大部分软件都含有查找/替换的功能,要完成查找替换功能就需要用到字符串匹配算法。字符串匹配的算法有很多,最著名的字符串匹配算法有:KMP算法,Boyer-Moore(BM)算法。如果要我们自己去实现字符串匹配功能,我们会怎样去做呢?当然,我们最容易想到的方法就是人们常说的蛮力匹配法。
术语:
模式串:即你要查找或替换的字符串。
源串/匹配串:你要从哪里查找或者替换哪里的字符串。
比如你想在test.txt中查找是否含有linux-code这个单词,那么模式串即为linux-code,源串/匹配串即为test.txt内的字符串。
现在我们就来谈谈如何从源串中匹配模式串吧!
算法一:Brute Force算法,即蛮力匹配法。
判断一个字符串是否为另一个字符串的子串,最简单的方法就是将模式串与源串一个个字符比较,如果不相等则将模式串后移一位,继续比较。如此,直到子串完全匹配或者到达源字符串的末尾。代码也很简洁,几行就搞定。当然,其效率也是很低下的。
int bf_match(char *src,char *pattern){
if(src==NULL || pattern ==NULL)
return 0;
int len1=strlen(src);
int len2=strlen(pattern);
int i,j;
for(i=0;i<len1;++i)
for(j=0;j<len2;++j) {
if(src[i+j]!=pattern[j])
break;
if(j==len2-1)
reurn i;
}
return -1; //没有匹配成功,返回-1
}
当然还有很多蛮力算法的改进算法,我们这里不做进一步讨论。
算法二:KMP算法
曾经,KMP算法很让人头痛!是三个牛X哄哄的人提出来的。因此,我们第一眼看去,该算法并不好理解。关于KMP算法的阮一峰的这篇文章,是我看到过的写得最精炼简洁的一篇。原文摘录如下(原作者:阮一峰)。
来听听,KMP算法是怎么实现的吧!
举例来说,有一个字符串"BBC ABCDAB ABCDABCDABDE",我想知道,里面是否包含另一个字符串"ABCDABD"?
1.

首先,字符串"BBC ABCDAB ABCDABCDABDE"的第一个字符与搜索词"ABCDABD"的第一个字符,进行比较。因为B与A不匹配,所以搜索词后移一位。
2.

因为B与A不匹配,搜索词再往后移。
3.

就这样,直到字符串有一个字符,与搜索词的第一个字符相同为止。
4.

接着比较字符串和搜索词的下一个字符,还是相同。
5.

直到字符串有一个字符,与搜索词对应的字符不相同为止。
6.

这时,最自然的反应是,将搜索词整个后移一位,再从头逐个比较。这样做虽然可行,但是效率很差,因为你要把"搜索位置"移到已经比较过的位置,重比一遍。
7.

一个基本事实是,当空格与D不匹配时,你其实知道前面六个字符是"ABCDAB"。KMP算法的想法是,设法利用这个已知信息,不要把"搜索位置"移回已经比较过的位置,继续把它向后移,这样就提高了效率。
8.

怎么做到这一点呢?可以针对搜索词,算出一张《部分匹配表》(Partial Match Table)。这张表是如何产生的,后面再介绍,这里只要会用就可以了。
9.

已知空格与D不匹配时,前面六个字符"ABCDAB"是匹配的。查表可知,最后一个匹配字符B对应的"部分匹配值"为2,因此按照下面的公式算出向后移动的位数:
移动位数 = 已匹配的字符数 - 对应的部分匹配值
因为 6 - 2 等于4,所以将搜索词向后移动4位。
10.

因为空格与C不匹配,搜索词还要继续往后移。这时,已匹配的字符数为2("AB"),对应的"部分匹配值"为0。所以,移动位数 = 2 - 0,结果为 2,于是将搜索词向后移2位。
11.

因为空格与A不匹配,继续后移一位。
12.

逐位比较,直到发现C与D不匹配。于是,移动位数 = 6 - 2,继续将搜索词向后移动4位。
13.

逐位比较,直到搜索词的最后一位,发现完全匹配,于是搜索完成。如果还要继续搜索(即找出全部匹配),移动位数 = 7 - 0,再将搜索词向后移动7位,这里就不再重复了。
14.

下面介绍《部分匹配表》是如何产生的。
首先,要了解两个概念:"前缀"和"后缀"。 "前缀"指除了最后一个字符以外,一个字符串的全部头部组合;"后缀"指除了第一个字符以外,一个字符串的全部尾部组合。
15.

"部分匹配值"就是"前缀"和"后缀"的最长的共有元素的长度。以"ABCDABD"为例:
- "A"的前缀和后缀都为空集,共有元素的长度为0;
- "AB"的前缀为[A],后缀为[B],共有元素的长度为0;
- "ABC"的前缀为[A, AB],后缀为[BC, C],共有元素的长度0;
- "ABCD"的前缀为[A, AB, ABC],后缀为[BCD, CD, D],共有元素的长度为0;
- "ABCDA"的前缀为[A, AB, ABC, ABCD],后缀为[BCDA, CDA, DA, A],共有元素为"A",长度为1;
- "ABCDAB"的前缀为[A, AB, ABC, ABCD, ABCDA],后缀为[BCDAB, CDAB, DAB, AB, B],共有元素为"AB",长度为2;
- "ABCDABD"的前缀为[A, AB, ABC, ABCD, ABCDA, ABCDAB],后缀为[BCDABD, CDABD, DABD, ABD, BD, D],共有元素的长度为0。
16.

"部分匹配"的实质是,有时候,字符串头部和尾部会有重复。比如,"ABCDAB"之中有两个"AB",那么它的"部分匹配值"就是2("AB"的长度)。搜索词移动的时候,第一个"AB"向后移动4位(字符串长度-部分匹配值),就可以来到第二个"AB"的位置。
从上面的讲解可以看出,KMP算法的核心是如何得到在字符失配时的移动步长。也就是如何得到《部分匹配表》。
OK,现在KMP算法基本介绍完了。来二两代码吧!
KMP算法的一个关键部分是得到《部分匹配表》。那么《部分匹配表》如何得到呢?上文已经有详细的介绍。
"部分匹配值"就是"前缀"和"后缀"的最长的共有元素的长度。以"ABCDABD"为例:
- "A"的前缀和后缀都为空集,共有元素的长度为0;
- "AB"的前缀为[A],后缀为[B],共有元素的长度为0;
- "ABC"的前缀为[A, AB],后缀为[BC, C],共有元素的长度0;
- "ABCD"的前缀为[A, AB, ABC],后缀为[BCD, CD, D],共有元素的长度为0;
- "ABCDA"的前缀为[A, AB, ABC, ABCD],后缀为[BCDA, CDA, DA, A],共有元素为"A",长度为1;
- "ABCDAB"的前缀为[A, AB, ABC, ABCD, ABCDA],后缀为[BCDAB, CDAB, DAB, AB, B],共有元素为"AB",长度为2;
- "ABCDABD"的前缀为[A, AB, ABC, ABCD, ABCDA, ABCDAB],后缀为[BCDABD, CDABD, DABD, ABD, BD, D],共有元素的长度为0。
据此,我们可以编码如下:
//返回值为一个指针。其指向的地址块连续存放了《部分匹配表》。
int* get_pmt(char * pattern){
if(pattern==NULL)
return NULL;
int len=strlen(pattern);
int* ppmt=(int*)malloc((len+1)*sizeof(int));//分配内存,用于存放《部分匹配表》。
memset(ppmt,0,sizeof((len+1)*sizeof(int)));//将分配的内存初始化为0
int i,j,k;
for(i=1;i<len;++i){
for(j=0;j<i;++j){
for(k=0;k<=j;++k){
if(pattern[k]!=pattern[i-j+k])//注意哦,这里是关键,注意数组的下标。如果没看明白,自己动手画一画。
break;
if((k==j)&&(k>=ppmt[i]))
ppmt[i]=k+1;
}
}
}
return ppmt;
}
好了,有了get_pmt函数后,我们就可以轻松的写出kmp算法了。全部代码如下,如果你看不明白,那去仔细看看正文吧。
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
int* get_pmt(char * pattern){
if(pattern==NULL)
return NULL;
int len=strlen(pattern);
int* ppmt=(int*)malloc((len+1)*sizeof(int));//分配内存,用于存放《部分匹配表》。
memset(ppmt,0,sizeof((len+1)*sizeof(int)));//将分配的内存初始化为0
int i,j,k;
for(i=1;i<len;++i){
for(j=0;j<i;++j){
for(k=0;k<=j;++k){
if(pattern[k]!=pattern[i-j+k])//注意哦,这里是关键,注意数组的下标。如果没看明白,自己动手画一画。
break;
if((k==j)&&(k>=ppmt[i]))
ppmt[i]=k+1;
}
}
}
return ppmt;
}
int kmp_match(char *src,char *pattern){
if(src==NULL || pattern==NULL)
return -1;
int len1=strlen(src);
int len2=strlen(pattern);
int *pmt=get_pmt(pattern);
printf("src len is:%d\n pattern len is:%d\n",len1,len2);
int i,j;
for(i=0;i<len1-len2;){
for(j=0;j<len2;++j){
if(src[i+j]!=pattern[j]){
i+=(j-pmt[j])>1 ? (j-pmt[j]):1;
printf("i is %d\n",i);//为了观察中间结果
break;
}
if(j==len2-1){
if(pmt)free(pmt);
return i;
}
}
}
if(pmt) free(pmt);
return -1;
}
int main(){
char src[32]="teslinuxlitforlinuxlinuetestfor";
char pattern[10]="linuxlinu";
printf("kmp_match result:%d\n",kmp_match(src,pattern));
}
当然,上述代码并不是最优的代码,get_pmt函数的实现可以进行进一步优化,这里就不涉及了。
作者:JJDiaries(阿呆) 微信公众号:linux-code
KMP文字介绍部分链接:http://www.ruanyifeng.com/blog/2013/05/Knuth–Morris–Pratt_algorithm.html
本文链接:http://www.cnblogs.com/jjdiaries/p/3397285.html
转载请注明作者及链接。觉得有用就顶一下,觉得很烂就踩一脚,尽情的踩吧,呵呵
搞定KMP匹配算法的更多相关文章
- [算法总结] 13 道题搞定 BAT 面试——字符串
1. KMP 算法 谈到字符串问题,不得不提的就是 KMP 算法,它是用来解决字符串查找的问题,可以在一个字符串(S)中查找一个子串(W)出现的位置.KMP 算法把字符匹配的时间复杂度缩小到 O(m+ ...
- 【开源】简单4步搞定QQ登录,无需什么代码功底【无语言界限】
说17号发超简单的教程就17号,qq核审通过后就封装了这个,现在放出来~~ 这个是我封装的一个开源项目:https://github.com/dunitian/LoTQQLogin ————————— ...
- 对百度WebUploader开源上传控件的二次封装,精简前端代码(两句代码搞定上传)
前言 首先声明一下,我这个是对WebUploader开源上传控件的二次封装,底层还是WebUploader实现的,只是为了更简洁的使用他而已. 下面先介绍一下WebUploader 简介: WebUp ...
- 教你怎么半天搞定Docker
首先,不要把docker想的那么高大,它不就是先做个镜像,然后通过docker像虚拟机一样跑起来嘛...docker其实在真实业务场景中还是非常有局限性的.Dockerfile脚本也没那么好写,有些应 ...
- 用ORM的思想操作XML文档,一个对象就搞定不要太简单。滚蛋吧!XmlDocument、XmlNode、Xml***……
大家有没有这样的感受,一涉及XML文档操作就得百度一遍.是不是非!常!烦!.各种类型,各种方法,更别提为了找到一个节点多费劲.本来想写个XML操作的工具方法,写了两行一想既然XML文档是有规律的,如果 ...
- JS组件系列——又一款MVVM组件:Vue(一:30分钟搞定前端增删改查)
前言:关于Vue框架,好几个月之前就听说过,了解一项新技术之后,总是处于观望状态,一直在犹豫要不要系统学习下.正好最近有点空,就去官网了解了下,看上去还不错的一个组件,就抽空研究了下.最近园子里vue ...
- JS组件系列——BootstrapTable+KnockoutJS实现增删改查解决方案(三):两个Viewmodel搞定增删改查
前言:之前博主分享过knockoutJS和BootstrapTable的一些基础用法,都是写基础应用,根本谈不上封装,仅仅是避免了html控件的取值和赋值,远远没有将MVVM的精妙展现出来.最近项目打 ...
- 如何让两个div在同一行显示?一个float搞定
最近在学习div和css,遇到了一些问题也解决了很多以前以为很难搞定的问题.比如:如何让两个div显示在同一行呢?(不是用table表格,table对SE不太友好)其实,<div> 是一个 ...
- 3小时搞定一个简单的MIS系统案例Northwind,有视频、有源代码下载、有真相
一.瞎扯框架.架构 楼主自从1998年从C语言.MASM.Foxbase开始学计算机开始接触这个行当16年以来,2001年干第一份与程序.软件.然后是各种屌的东西开始,差不多干了13年了,这13年来, ...
随机推荐
- 【C++基础】类的组合
所谓类的组合是指:类中的成员数据是还有一个类的对象或者是还有一个类的指针或引用.通过类的组合能够在已有的抽象的基础上实现更复杂的抽象. 比如: 1.按值组合 #include<iostream. ...
- linux_曝出重大bash安全漏洞及修复方法
日前Linux官方内置Bash中新发现一个非常严重安全漏洞(漏洞参考https://access.redhat.com/security/cve/CVE-2014-6271 ),黑客可以利用该Bas ...
- linux_ Redhat Linux配置JDK和Tomcat需要注意的地方
转:http://blog.csdn.net/hongdi/article/details/10525797 1.操作系统和安装包操作系统:Redhat Linux 6.4服务器版,桌面安装JDK:j ...
- MAC使用小技巧(二)
一.Safari-->广告数量不足 --原因:DNS被拦截,被恶意推送广告. ----------------------------- [ 思路 ] 修改hosts文件 $ cd /etc $ ...
- 教你一步一步部署.net免费空间OpenShift系列之三------上传ASP.net程序
接上回书,创建应用后,我们如何将自己的ASP.Net部署到应用空间呢,这里用WinSCP的SFTP协议进行上传和下载 上传ASP.net程序 下载WinSCP,并打开PuTTYGen 点击Genera ...
- 在Mac电脑上为Dash制作docSet文档
Dash是mac上的一款查看API的工具,里面能够直接下载大部分的API文档,可是有时候我们假设想把自己手里已有的文档也集成到Dash中,就须要我们自己动手了,事实上Dash官方也有教程怎样制作doc ...
- AngularJS系列之总结
AngularJS深入的系列就是这九篇博客了,把我以前在项目中应用到的和自己学习的都总结在了里面.为了更方便的看,把我写的AngularJS系列的博客都列到下面.之后就开始学习ionic:html5移 ...
- BEGINNING SHAREPOINT® 2013 DEVELOPMENT 文件夹
BEGINNING SHAREPOINT® 2013 DEVELOPMENT 文件夹 第一部分--開始使用SharePoint 2013 第1章节--SharePoint 2013 介绍 逐渐了解Sh ...
- 用bat启动sqlserver服务
声明下这个脚本不是我写的,忘了是从哪看到的了,在此分享给大家,因为在我的理解中技术就是用来分享的,,希望原创作者看到了不要介意. 1.创建个文本,将后缀名改成.bat 2.将下边语句粘贴进去,然后保存 ...
- APACHE启动失败是SYSTEM对apache目录没权限导致
表现如下: Apache: 1.The Apache service named reported the following error:>>> (OS 5)拒绝访问. : htt ...