Description

Being a knight is a very attractive career: searching for the Holy Grail, saving damsels in distress, and drinking with the other knights are fun things to do. Therefore, it is not very surprising that in recent years the kingdom of King Arthur has experienced an unprecedented increase in the number of knights. There are so many knights now, that it is very rare that every Knight of the Round Table can come at the same time to Camelot and sit around the round table; usually only a small group of the knights isthere, while the rest are busy doing heroic deeds around the country.

Knights can easily get over-excited during discussions-especially after a couple of drinks. After some unfortunate accidents, King Arthur asked the famous wizard Merlin to make sure that in the future no fights break out between the knights. After studying the problem carefully, Merlin realized that the fights can only be prevented if the knights are seated according to the following two rules:

  • The knights should be seated such that two knights who hate each other should not be neighbors at the table. (Merlin has a list that says who hates whom.) The knights are sitting around a roundtable, thus every knight has exactly two neighbors.
  • An odd number of knights should sit around the table. This ensures that if the knights cannot agree on something, then they can settle the issue by voting. (If the number of knights is even, then itcan happen that ``yes" and ``no" have the same number of votes, and the argument goes on.)

Merlin will let the knights sit down only if these two rules are satisfied, otherwise he cancels the meeting. (If only one knight shows up, then the meeting is canceled as well, as one person cannot sit around a table.) Merlin realized that this means that there can be knights who cannot be part of any seating arrangements that respect these rules, and these knights will never be able to sit at the Round Table (one such case is if a knight hates every other knight, but there are many other possible reasons). If a knight cannot sit at the Round Table, then he cannot be a member of the Knights of the Round Table and must be expelled from the order. These knights have to be transferred to a less-prestigious order, such as the Knights of the Square Table, the Knights of the Octagonal Table, or the Knights of the Banana-Shaped Table. To help Merlin, you have to write a program that will determine the number of knights that must be expelled.

Input

The input contains several blocks of test cases. Each case begins with a line containing two integers 1 ≤ n ≤ 1000 and 1 ≤ m ≤ 1000000 . The number n is the number of knights. The next m lines describe which knight hates which knight. Each of these m lines contains two integers k1 and k2 , which means that knight number k1 and knight number k2 hate each other (the numbers k1 and k2 are between 1 and n ).

The input is terminated by a block with n = m = 0 .

Output

For each test case you have to output a single integer on a separate line: the number of knights that have to be expelled.

Sample Input

5 5
1 4
1 5
2 5
3 4
4 5
0 0

Sample Output

2
   题目大意:有n个骑士,他们之间可能有憎恨关系,例如:骑士a 憎恨 骑士b ,那么骑士b 也一定 憎恨 骑士a。现在要给这n个骑士开会,会议需要满足以下要求:
   1、参加会议的骑士数量必须是奇数。
   2、会议选用圆形桌子,即骑士们开会时围成一个圈。
   3、要求开会时任意一个骑士与相邻的两个骑士之间没有憎恨关系。
当然,会议可以开很多场,而且一个骑士也可以参加很多场会议(如果能参加的话),问:一场会议也不能参加的骑士数量是多少?
   解题思路:
   1、先说一下建图方法:将两个没有憎恨关系的骑士之间连接一条边(无向边),代表开会时这两个骑士可以相邻。
   2、判断一个骑士能否参加会议,就是判断在这个无向图中有没有存在一个简单的奇圈包含这个骑士(简单奇圈是指由奇数个顶点组成的圈,并且这些顶点互不相同)。
   3、在同一个简单奇圈上的点必然在同一个双连通分量中,所以要找出图中所有的双连通分量,然后判断这个双连通分量中有没有奇圈。二分图中是没有奇圈的,如果一个双联通分量不是二分图,那么一定存在奇圈(此处不再证明),所以只需判断一个双连通分量是不是二分图即可,如果是二分图,那么这个连通分量中每个点都可以参加会议。
请看代码:
#include<iostream>
#include<string>
#include<algorithm>
#include<cstring>
#include<queue>
#include<cmath>
#include<vector>
#include<cstdio>
#define mem(a , b) memset(a , b , sizeof(a))
using namespace std ;
inline void RD(int &a)
{
a = 0 ;
char t ;
do
{
t = getchar() ;
}
while (t < '0' || t > '9') ;
a = t - '0' ;
while ((t = getchar()) >= '0' && t <= '9')
{
a = a * 10 + t - '0' ;
}
}
inline void OT(int a)
{
if(a >= 10)
{
OT(a / 10) ;
}
putchar(a % 10 + '0') ;
}
const int MAXN = 1005 ;
typedef struct edge
{
int u ;
int v ;
} E ;
vector<int>vert[MAXN] ;
vector<int>bscnt[MAXN] ; // 记录每个双连通分量里的顶点
int blcnt[MAXN] ; // 记录每个顶点属于哪个连通分量
bool ha[MAXN][MAXN] ; // 标记两个骑士是否相互憎恨
bool vis[MAXN] ;
int n , m ;
int dfn[MAXN] ;
int low[MAXN] ;
int tmpdfn ;
int top ;
E stap[MAXN * MAXN] ;
bool odd[MAXN] ;
short color[MAXN] ;
int scnt ;
void clr()
{
mem(ha , 0) ;
mem(dfn , 0) ;
mem(low , 0) ;
mem(vis , 0) ;
mem(blcnt , 0) ;
mem(color , 0) ;
mem(odd , 0) ;
int i ;
for(i = 0 ; i <= n ; i ++)
{
vert[i].clear() ;
bscnt[i].clear() ;
}
top = -1 ;
tmpdfn = 0 ;
scnt = 0 ;
}
void tarjan(int u , int fa)
{
int son = 0 ;
vis[u] = true ;
dfn[u] = low[u] = ++ tmpdfn ;
int i ;
for(i = 0 ; i < vert[u].size() ; i ++)
{
int v = vert[u][i] ;
E e ;
e.u = u ;
e.v = v ;
if(!vis[v])
{
stap[++ top] = e ;
son ++ ;
tarjan(v , u) ;
low[u] = min(low[u] , low[v]) ;
if(low[v] >= dfn[u])
{
scnt ++ ;
int tu , tv ;
while (1)
{
E tmp = stap[top --] ;
tu = tmp.u ;
tv = tmp.v ;
if(blcnt[tu] != scnt) // 注意此处的条件,由于关节点属于
//不同的连通分量,所以条件不能写成(!blcnt[tu])
{
blcnt[tu] = scnt ;
bscnt[scnt].push_back(tu) ;
}
if(blcnt[tv] != scnt)
{
blcnt[tv] = scnt ;
bscnt[scnt].push_back(tv) ;
}
if(tu == u && tv == v)
break ;
}
}
}
else if(v != fa && dfn[v] < dfn[u]) // 注意此处的判断条件,不要漏掉 dfn[v] < dfn[u]
{
stap[++ top] = e ;
low[u] = min(low[u] , dfn[v]) ;
} }
}
void init()
{
clr() ;
int i , j ;
for(i = 0 ; i < m ; i ++)
{
int a , b ;
RD(a) ;
RD(b) ;
ha[a][b] = ha[b][a] = true ;
}
for(i = 1 ; i <= n ; i ++) // 建图
{
for(j = 1 ; j <= n ; j ++)
{
if(!ha[i][j] && i != j)
vert[i].push_back(j) ;
}
}
}
bool isbg(int u , int c) //判断是否为二分图
{
int i ;
for(i = 0 ; i < vert[u].size() ; i ++)
{
int v = vert[u][i] ;
if(blcnt[v] != c)
continue ;
if(color[v] == color[u])
return false ;
if(!color[v])
{
color[v] = 3 - color[u] ;
if(!isbg(v , c))
return false ;
}
}
return true ;
}
void solve()
{
mem(vis , 0) ;
int i ;
for(i = 1 ; i <= n ; i ++)
{
if(!vis[i])
{
tarjan(i , -1) ;
}
}
for(i = 1 ; i <= scnt ; i ++)
{
int j ;
int tmp ;
mem(color , 0) ;
for(j = 0 ; j < bscnt[i].size() ; j ++)
{
tmp = bscnt[i][j] ;
blcnt[tmp] = i ;
}
color[tmp] = 1 ;
if(!isbg(tmp , i))
{
for(j = 0 ; j < bscnt[i].size() ; j ++)
{
tmp = bscnt[i][j] ;
odd[tmp] = true ;
}
}
}
int ans = n ;
for(i = 1 ; i <= n ; i ++)
{
if(odd[i])
ans -- ;
}
OT(ans) ;
puts("") ;
}
int main()
{
while (scanf("%d%d" , &n , &m) != EOF)
{
if(n == 0 && m == 0)
break ;
init() ;
solve() ;
}
return 0 ;
}
												

POJ 2942 Knights of the Round Table - from lanshui_Yang的更多相关文章

  1. POJ 2942 Knights of the Round Table 黑白着色+点双连通分量

    题目来源:POJ 2942 Knights of the Round Table 题意:统计多个个骑士不能參加随意一场会议 每场会议必须至少三个人 排成一个圈 而且相邻的人不能有矛盾 题目给出若干个条 ...

  2. poj 2942 Knights of the Round Table - Tarjan

    Being a knight is a very attractive career: searching for the Holy Grail, saving damsels in distress ...

  3. POJ 2942 Knights of the Round Table

    Knights of the Round Table Time Limit: 7000MS   Memory Limit: 65536K Total Submissions: 10911   Acce ...

  4. poj 2942 Knights of the Round Table 圆桌骑士(双连通分量模板题)

    Knights of the Round Table Time Limit: 7000MS   Memory Limit: 65536K Total Submissions: 9169   Accep ...

  5. POJ 2942 Knights of the Round Table(双连通分量)

    http://poj.org/problem?id=2942 题意 :n个骑士举行圆桌会议,每次会议应至少3个骑士参加,且相互憎恨的骑士不能坐在圆桌旁的相邻位置.如果意见发生分歧,则需要举手表决,因此 ...

  6. poj 2942 Knights of the Round Table(点双连通分量+二分图判定)

    题目链接:http://poj.org/problem?id=2942 题意:n个骑士要举行圆桌会议,但是有些骑士相互仇视,必须满足以下两个条件才能举行: (1)任何两个互相仇视的骑士不能相邻,每个骑 ...

  7. POJ 2942 Knights of the Round Table (点双连通分量)

    题意:多个骑士要开会,3人及以上才能凑一桌,其中部分人已经互相讨厌,肯定不坐在同一桌的相邻位置,而且一桌只能奇数个人才能开台.给出多个人的互相讨厌图,要求多少人开不成会(注:会议不要求同时进行,一个人 ...

  8. POJ 2942.Knights of the Round Table (双连通)

    简要题解: 意在判断哪些点在一个图的  奇环的双连通分量内. tarjan求出所有的点双连通分量,再用二分图染色判断每个双连通分量是否形成了奇环,记录哪些点出现在内奇环内 输出没有在奇环内的点的数目 ...

  9. POJ - 2942 Knights of the Round Table (点双联通分量+二分图判定)

    题意:有N个人要参加会议,围圈而坐,需要举手表决,所以每次会议都必须是奇数个人参加.有M对人互相讨厌,他们的座位不能相邻.问有多少人任意一场会议都不能出席. 分析:给出的M条关系是讨厌,将每个人视作点 ...

随机推荐

  1. 将 Shiro 作为一个许可为基础的应用程序 五:password加密/解密Spring应用

    考虑系统password的安全,眼下大多数系统都不会把password以明文的形式存放到数据库中. 一把会採取下面几种方式对password进行处理 password的存储 "编码" ...

  2. windows查看某个端口被谁占用

    XAMPP Error: Apache shutdown unexpectedly. 解决思路 我建议首先 运行在cmd中运行 (安装目录)apache/bin/httpd.exe 无法启动apach ...

  3. Cocos2dx中Plugin-X 在android下的整合

    直接拉plugin-x中的jar包导入到Eclipse中就可以.用这么麻烦的工具干嘛.

  4. 【翻译】十大要避免的Ext JS开发方法

    原文地址:http://www.sencha.com/blog/top-10-ext-js-development-practices-to-avoid/ 作者:Sean Lanktree Sean ...

  5. C#实现环形队列

    概述 看了一个数据结构的教程,是用C++写的,可自己C#还是一个菜鸟,更别说C++了,但还是大胆尝试用C#将其中的环形队列的实现写出来,先上代码: public class MyQueue<T& ...

  6. SVN权限解析规则详解(转)

    首先创建一个版本库后,会生成最初的目录结构和基本的配置文件,本文主要分析“authz”文件的内容:我们先抛开alias和groups不谈,将重点放在路径的权限配置上. 一. 权限格式 svn权限的基本 ...

  7. Linux统计文件/目录数量ls -l | grep "^-" | wc -l匹配开头和结尾

    Linux统计文件数量 ls -l | grep "^-" | wc -l “^-”  一般文件 “^d” 目录文件 shell/vim中^表示开头 cat repatterns ...

  8. 【虚拟化实战】容灾设计之三Stretched Cluster

    作者:范军 (Frank Fan) 新浪微博:@frankfan7 Stretched Cluster是一把双刃剑,会用的如行云流水,用不好反而受其限制. 传统的vSphere Cluster是指一个 ...

  9. (step4.3.9)hdu 1584(蜘蛛牌——DFS)

    题目大意:本体是中文题,可以直接在OJ上看 /* * 1584_2.cpp * * Created on: 2013年8月22日 * Author: Administrator */ #include ...

  10. FatMouse&#39; Trade(杭电1009)

    FatMouse' Trade Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 65536/32768K (Java/Other) Tot ...