Description

Being a knight is a very attractive career: searching for the Holy Grail, saving damsels in distress, and drinking with the other knights are fun things to do. Therefore, it is not very surprising that in recent years the kingdom of King Arthur has experienced an unprecedented increase in the number of knights. There are so many knights now, that it is very rare that every Knight of the Round Table can come at the same time to Camelot and sit around the round table; usually only a small group of the knights isthere, while the rest are busy doing heroic deeds around the country.

Knights can easily get over-excited during discussions-especially after a couple of drinks. After some unfortunate accidents, King Arthur asked the famous wizard Merlin to make sure that in the future no fights break out between the knights. After studying the problem carefully, Merlin realized that the fights can only be prevented if the knights are seated according to the following two rules:

  • The knights should be seated such that two knights who hate each other should not be neighbors at the table. (Merlin has a list that says who hates whom.) The knights are sitting around a roundtable, thus every knight has exactly two neighbors.
  • An odd number of knights should sit around the table. This ensures that if the knights cannot agree on something, then they can settle the issue by voting. (If the number of knights is even, then itcan happen that ``yes" and ``no" have the same number of votes, and the argument goes on.)

Merlin will let the knights sit down only if these two rules are satisfied, otherwise he cancels the meeting. (If only one knight shows up, then the meeting is canceled as well, as one person cannot sit around a table.) Merlin realized that this means that there can be knights who cannot be part of any seating arrangements that respect these rules, and these knights will never be able to sit at the Round Table (one such case is if a knight hates every other knight, but there are many other possible reasons). If a knight cannot sit at the Round Table, then he cannot be a member of the Knights of the Round Table and must be expelled from the order. These knights have to be transferred to a less-prestigious order, such as the Knights of the Square Table, the Knights of the Octagonal Table, or the Knights of the Banana-Shaped Table. To help Merlin, you have to write a program that will determine the number of knights that must be expelled.

Input

The input contains several blocks of test cases. Each case begins with a line containing two integers 1 ≤ n ≤ 1000 and 1 ≤ m ≤ 1000000 . The number n is the number of knights. The next m lines describe which knight hates which knight. Each of these m lines contains two integers k1 and k2 , which means that knight number k1 and knight number k2 hate each other (the numbers k1 and k2 are between 1 and n ).

The input is terminated by a block with n = m = 0 .

Output

For each test case you have to output a single integer on a separate line: the number of knights that have to be expelled.

Sample Input

5 5
1 4
1 5
2 5
3 4
4 5
0 0

Sample Output

2
   题目大意:有n个骑士,他们之间可能有憎恨关系,例如:骑士a 憎恨 骑士b ,那么骑士b 也一定 憎恨 骑士a。现在要给这n个骑士开会,会议需要满足以下要求:
   1、参加会议的骑士数量必须是奇数。
   2、会议选用圆形桌子,即骑士们开会时围成一个圈。
   3、要求开会时任意一个骑士与相邻的两个骑士之间没有憎恨关系。
当然,会议可以开很多场,而且一个骑士也可以参加很多场会议(如果能参加的话),问:一场会议也不能参加的骑士数量是多少?
   解题思路:
   1、先说一下建图方法:将两个没有憎恨关系的骑士之间连接一条边(无向边),代表开会时这两个骑士可以相邻。
   2、判断一个骑士能否参加会议,就是判断在这个无向图中有没有存在一个简单的奇圈包含这个骑士(简单奇圈是指由奇数个顶点组成的圈,并且这些顶点互不相同)。
   3、在同一个简单奇圈上的点必然在同一个双连通分量中,所以要找出图中所有的双连通分量,然后判断这个双连通分量中有没有奇圈。二分图中是没有奇圈的,如果一个双联通分量不是二分图,那么一定存在奇圈(此处不再证明),所以只需判断一个双连通分量是不是二分图即可,如果是二分图,那么这个连通分量中每个点都可以参加会议。
请看代码:
#include<iostream>
#include<string>
#include<algorithm>
#include<cstring>
#include<queue>
#include<cmath>
#include<vector>
#include<cstdio>
#define mem(a , b) memset(a , b , sizeof(a))
using namespace std ;
inline void RD(int &a)
{
a = 0 ;
char t ;
do
{
t = getchar() ;
}
while (t < '0' || t > '9') ;
a = t - '0' ;
while ((t = getchar()) >= '0' && t <= '9')
{
a = a * 10 + t - '0' ;
}
}
inline void OT(int a)
{
if(a >= 10)
{
OT(a / 10) ;
}
putchar(a % 10 + '0') ;
}
const int MAXN = 1005 ;
typedef struct edge
{
int u ;
int v ;
} E ;
vector<int>vert[MAXN] ;
vector<int>bscnt[MAXN] ; // 记录每个双连通分量里的顶点
int blcnt[MAXN] ; // 记录每个顶点属于哪个连通分量
bool ha[MAXN][MAXN] ; // 标记两个骑士是否相互憎恨
bool vis[MAXN] ;
int n , m ;
int dfn[MAXN] ;
int low[MAXN] ;
int tmpdfn ;
int top ;
E stap[MAXN * MAXN] ;
bool odd[MAXN] ;
short color[MAXN] ;
int scnt ;
void clr()
{
mem(ha , 0) ;
mem(dfn , 0) ;
mem(low , 0) ;
mem(vis , 0) ;
mem(blcnt , 0) ;
mem(color , 0) ;
mem(odd , 0) ;
int i ;
for(i = 0 ; i <= n ; i ++)
{
vert[i].clear() ;
bscnt[i].clear() ;
}
top = -1 ;
tmpdfn = 0 ;
scnt = 0 ;
}
void tarjan(int u , int fa)
{
int son = 0 ;
vis[u] = true ;
dfn[u] = low[u] = ++ tmpdfn ;
int i ;
for(i = 0 ; i < vert[u].size() ; i ++)
{
int v = vert[u][i] ;
E e ;
e.u = u ;
e.v = v ;
if(!vis[v])
{
stap[++ top] = e ;
son ++ ;
tarjan(v , u) ;
low[u] = min(low[u] , low[v]) ;
if(low[v] >= dfn[u])
{
scnt ++ ;
int tu , tv ;
while (1)
{
E tmp = stap[top --] ;
tu = tmp.u ;
tv = tmp.v ;
if(blcnt[tu] != scnt) // 注意此处的条件,由于关节点属于
//不同的连通分量,所以条件不能写成(!blcnt[tu])
{
blcnt[tu] = scnt ;
bscnt[scnt].push_back(tu) ;
}
if(blcnt[tv] != scnt)
{
blcnt[tv] = scnt ;
bscnt[scnt].push_back(tv) ;
}
if(tu == u && tv == v)
break ;
}
}
}
else if(v != fa && dfn[v] < dfn[u]) // 注意此处的判断条件,不要漏掉 dfn[v] < dfn[u]
{
stap[++ top] = e ;
low[u] = min(low[u] , dfn[v]) ;
} }
}
void init()
{
clr() ;
int i , j ;
for(i = 0 ; i < m ; i ++)
{
int a , b ;
RD(a) ;
RD(b) ;
ha[a][b] = ha[b][a] = true ;
}
for(i = 1 ; i <= n ; i ++) // 建图
{
for(j = 1 ; j <= n ; j ++)
{
if(!ha[i][j] && i != j)
vert[i].push_back(j) ;
}
}
}
bool isbg(int u , int c) //判断是否为二分图
{
int i ;
for(i = 0 ; i < vert[u].size() ; i ++)
{
int v = vert[u][i] ;
if(blcnt[v] != c)
continue ;
if(color[v] == color[u])
return false ;
if(!color[v])
{
color[v] = 3 - color[u] ;
if(!isbg(v , c))
return false ;
}
}
return true ;
}
void solve()
{
mem(vis , 0) ;
int i ;
for(i = 1 ; i <= n ; i ++)
{
if(!vis[i])
{
tarjan(i , -1) ;
}
}
for(i = 1 ; i <= scnt ; i ++)
{
int j ;
int tmp ;
mem(color , 0) ;
for(j = 0 ; j < bscnt[i].size() ; j ++)
{
tmp = bscnt[i][j] ;
blcnt[tmp] = i ;
}
color[tmp] = 1 ;
if(!isbg(tmp , i))
{
for(j = 0 ; j < bscnt[i].size() ; j ++)
{
tmp = bscnt[i][j] ;
odd[tmp] = true ;
}
}
}
int ans = n ;
for(i = 1 ; i <= n ; i ++)
{
if(odd[i])
ans -- ;
}
OT(ans) ;
puts("") ;
}
int main()
{
while (scanf("%d%d" , &n , &m) != EOF)
{
if(n == 0 && m == 0)
break ;
init() ;
solve() ;
}
return 0 ;
}
												

POJ 2942 Knights of the Round Table - from lanshui_Yang的更多相关文章

  1. POJ 2942 Knights of the Round Table 黑白着色+点双连通分量

    题目来源:POJ 2942 Knights of the Round Table 题意:统计多个个骑士不能參加随意一场会议 每场会议必须至少三个人 排成一个圈 而且相邻的人不能有矛盾 题目给出若干个条 ...

  2. poj 2942 Knights of the Round Table - Tarjan

    Being a knight is a very attractive career: searching for the Holy Grail, saving damsels in distress ...

  3. POJ 2942 Knights of the Round Table

    Knights of the Round Table Time Limit: 7000MS   Memory Limit: 65536K Total Submissions: 10911   Acce ...

  4. poj 2942 Knights of the Round Table 圆桌骑士(双连通分量模板题)

    Knights of the Round Table Time Limit: 7000MS   Memory Limit: 65536K Total Submissions: 9169   Accep ...

  5. POJ 2942 Knights of the Round Table(双连通分量)

    http://poj.org/problem?id=2942 题意 :n个骑士举行圆桌会议,每次会议应至少3个骑士参加,且相互憎恨的骑士不能坐在圆桌旁的相邻位置.如果意见发生分歧,则需要举手表决,因此 ...

  6. poj 2942 Knights of the Round Table(点双连通分量+二分图判定)

    题目链接:http://poj.org/problem?id=2942 题意:n个骑士要举行圆桌会议,但是有些骑士相互仇视,必须满足以下两个条件才能举行: (1)任何两个互相仇视的骑士不能相邻,每个骑 ...

  7. POJ 2942 Knights of the Round Table (点双连通分量)

    题意:多个骑士要开会,3人及以上才能凑一桌,其中部分人已经互相讨厌,肯定不坐在同一桌的相邻位置,而且一桌只能奇数个人才能开台.给出多个人的互相讨厌图,要求多少人开不成会(注:会议不要求同时进行,一个人 ...

  8. POJ 2942.Knights of the Round Table (双连通)

    简要题解: 意在判断哪些点在一个图的  奇环的双连通分量内. tarjan求出所有的点双连通分量,再用二分图染色判断每个双连通分量是否形成了奇环,记录哪些点出现在内奇环内 输出没有在奇环内的点的数目 ...

  9. POJ - 2942 Knights of the Round Table (点双联通分量+二分图判定)

    题意:有N个人要参加会议,围圈而坐,需要举手表决,所以每次会议都必须是奇数个人参加.有M对人互相讨厌,他们的座位不能相邻.问有多少人任意一场会议都不能出席. 分析:给出的M条关系是讨厌,将每个人视作点 ...

随机推荐

  1. JQuery - 判断radio是否选中,获取选中值

    代码: <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3. ...

  2. TensorFlow实现与优化深度神经网络

    TensorFlow实现与优化深度神经网络 转载请注明作者:梦里风林Github工程地址:https://github.com/ahangchen/GDLnotes欢迎star,有问题可以到Issue ...

  3. jquery mobile实现拨打电话功能的几种方法

    3.使用wtai协议进行拨打电话. 在wml中可以调用设备的wtai函数来呼叫特定的电话号码.目前,越来越多的浏览器都支持这个功能,但还不是所有. 代码如下所示: 复制代码 代码如下: <inp ...

  4. Android菜鸟的成长笔记(7)——什么是Activity

    原文:[置顶] Android菜鸟的成长笔记(7)——什么是Activity 前面我们做了一个小例子,在分析代码的时候我们提到了Activity,那么什么是Activity呢? Activity是An ...

  5. -force_load

    Crash Log: Last Exception Backtrace: 0   CoreFoundation                 0x2f087f06 __exceptionPrepro ...

  6. 【从cocos2d-x学习设计模式】第一阶段:辛格尔顿

    设计模式,它总结了前辈在许多方案重用代码.它是一个想法. 因为我们爱cocos2d-x,然后我们从去cocos2d-x在设计模式中,右一起学习!本篇解释未来辛格尔顿. 提cocos2d-x中间Dire ...

  7. html怎么引用css

    <head> <title>统一站内风格</title> <link rel="stylesheet" type="text/c ...

  8. Android Studio之同一窗口打开项目

    Android Studio默认新打开的项目都是重新打开一个窗口,和原项目窗口同时存在,如果打开多个项目,则有很多窗口同时打开,怎么根据需要决定自己以何种方式打开呢? 1.设置打开新项目的方式 第一项 ...

  9. MingW环境下的windows编程

    一般在进行windows编程时都使用vc++精简版,其插入菜单,图片等资源等更简单,且vc中对中文有更好的支持,win7下安装的Mingw中文并不能很好地显示,有光标显示的位置和光标实际位置不符的问题 ...

  10. 用Qt开发Web和本地混合的应用

    QtWebkit 模块使得Qt widget能够通过HTML的object标签嵌入到web页面中,并通过JavaScript代码进行访问,而Qt对象也能相应的访问web页面元素. 将Qt对象插入到we ...