Description

Being a knight is a very attractive career: searching for the Holy Grail, saving damsels in distress, and drinking with the other knights are fun things to do. Therefore, it is not very surprising that in recent years the kingdom of King Arthur has experienced an unprecedented increase in the number of knights. There are so many knights now, that it is very rare that every Knight of the Round Table can come at the same time to Camelot and sit around the round table; usually only a small group of the knights isthere, while the rest are busy doing heroic deeds around the country.

Knights can easily get over-excited during discussions-especially after a couple of drinks. After some unfortunate accidents, King Arthur asked the famous wizard Merlin to make sure that in the future no fights break out between the knights. After studying the problem carefully, Merlin realized that the fights can only be prevented if the knights are seated according to the following two rules:

  • The knights should be seated such that two knights who hate each other should not be neighbors at the table. (Merlin has a list that says who hates whom.) The knights are sitting around a roundtable, thus every knight has exactly two neighbors.
  • An odd number of knights should sit around the table. This ensures that if the knights cannot agree on something, then they can settle the issue by voting. (If the number of knights is even, then itcan happen that ``yes" and ``no" have the same number of votes, and the argument goes on.)

Merlin will let the knights sit down only if these two rules are satisfied, otherwise he cancels the meeting. (If only one knight shows up, then the meeting is canceled as well, as one person cannot sit around a table.) Merlin realized that this means that there can be knights who cannot be part of any seating arrangements that respect these rules, and these knights will never be able to sit at the Round Table (one such case is if a knight hates every other knight, but there are many other possible reasons). If a knight cannot sit at the Round Table, then he cannot be a member of the Knights of the Round Table and must be expelled from the order. These knights have to be transferred to a less-prestigious order, such as the Knights of the Square Table, the Knights of the Octagonal Table, or the Knights of the Banana-Shaped Table. To help Merlin, you have to write a program that will determine the number of knights that must be expelled.

Input

The input contains several blocks of test cases. Each case begins with a line containing two integers 1 ≤ n ≤ 1000 and 1 ≤ m ≤ 1000000 . The number n is the number of knights. The next m lines describe which knight hates which knight. Each of these m lines contains two integers k1 and k2 , which means that knight number k1 and knight number k2 hate each other (the numbers k1 and k2 are between 1 and n ).

The input is terminated by a block with n = m = 0 .

Output

For each test case you have to output a single integer on a separate line: the number of knights that have to be expelled.

Sample Input

5 5
1 4
1 5
2 5
3 4
4 5
0 0

Sample Output

2
   题目大意:有n个骑士,他们之间可能有憎恨关系,例如:骑士a 憎恨 骑士b ,那么骑士b 也一定 憎恨 骑士a。现在要给这n个骑士开会,会议需要满足以下要求:
   1、参加会议的骑士数量必须是奇数。
   2、会议选用圆形桌子,即骑士们开会时围成一个圈。
   3、要求开会时任意一个骑士与相邻的两个骑士之间没有憎恨关系。
当然,会议可以开很多场,而且一个骑士也可以参加很多场会议(如果能参加的话),问:一场会议也不能参加的骑士数量是多少?
   解题思路:
   1、先说一下建图方法:将两个没有憎恨关系的骑士之间连接一条边(无向边),代表开会时这两个骑士可以相邻。
   2、判断一个骑士能否参加会议,就是判断在这个无向图中有没有存在一个简单的奇圈包含这个骑士(简单奇圈是指由奇数个顶点组成的圈,并且这些顶点互不相同)。
   3、在同一个简单奇圈上的点必然在同一个双连通分量中,所以要找出图中所有的双连通分量,然后判断这个双连通分量中有没有奇圈。二分图中是没有奇圈的,如果一个双联通分量不是二分图,那么一定存在奇圈(此处不再证明),所以只需判断一个双连通分量是不是二分图即可,如果是二分图,那么这个连通分量中每个点都可以参加会议。
请看代码:
#include<iostream>
#include<string>
#include<algorithm>
#include<cstring>
#include<queue>
#include<cmath>
#include<vector>
#include<cstdio>
#define mem(a , b) memset(a , b , sizeof(a))
using namespace std ;
inline void RD(int &a)
{
a = 0 ;
char t ;
do
{
t = getchar() ;
}
while (t < '0' || t > '9') ;
a = t - '0' ;
while ((t = getchar()) >= '0' && t <= '9')
{
a = a * 10 + t - '0' ;
}
}
inline void OT(int a)
{
if(a >= 10)
{
OT(a / 10) ;
}
putchar(a % 10 + '0') ;
}
const int MAXN = 1005 ;
typedef struct edge
{
int u ;
int v ;
} E ;
vector<int>vert[MAXN] ;
vector<int>bscnt[MAXN] ; // 记录每个双连通分量里的顶点
int blcnt[MAXN] ; // 记录每个顶点属于哪个连通分量
bool ha[MAXN][MAXN] ; // 标记两个骑士是否相互憎恨
bool vis[MAXN] ;
int n , m ;
int dfn[MAXN] ;
int low[MAXN] ;
int tmpdfn ;
int top ;
E stap[MAXN * MAXN] ;
bool odd[MAXN] ;
short color[MAXN] ;
int scnt ;
void clr()
{
mem(ha , 0) ;
mem(dfn , 0) ;
mem(low , 0) ;
mem(vis , 0) ;
mem(blcnt , 0) ;
mem(color , 0) ;
mem(odd , 0) ;
int i ;
for(i = 0 ; i <= n ; i ++)
{
vert[i].clear() ;
bscnt[i].clear() ;
}
top = -1 ;
tmpdfn = 0 ;
scnt = 0 ;
}
void tarjan(int u , int fa)
{
int son = 0 ;
vis[u] = true ;
dfn[u] = low[u] = ++ tmpdfn ;
int i ;
for(i = 0 ; i < vert[u].size() ; i ++)
{
int v = vert[u][i] ;
E e ;
e.u = u ;
e.v = v ;
if(!vis[v])
{
stap[++ top] = e ;
son ++ ;
tarjan(v , u) ;
low[u] = min(low[u] , low[v]) ;
if(low[v] >= dfn[u])
{
scnt ++ ;
int tu , tv ;
while (1)
{
E tmp = stap[top --] ;
tu = tmp.u ;
tv = tmp.v ;
if(blcnt[tu] != scnt) // 注意此处的条件,由于关节点属于
//不同的连通分量,所以条件不能写成(!blcnt[tu])
{
blcnt[tu] = scnt ;
bscnt[scnt].push_back(tu) ;
}
if(blcnt[tv] != scnt)
{
blcnt[tv] = scnt ;
bscnt[scnt].push_back(tv) ;
}
if(tu == u && tv == v)
break ;
}
}
}
else if(v != fa && dfn[v] < dfn[u]) // 注意此处的判断条件,不要漏掉 dfn[v] < dfn[u]
{
stap[++ top] = e ;
low[u] = min(low[u] , dfn[v]) ;
} }
}
void init()
{
clr() ;
int i , j ;
for(i = 0 ; i < m ; i ++)
{
int a , b ;
RD(a) ;
RD(b) ;
ha[a][b] = ha[b][a] = true ;
}
for(i = 1 ; i <= n ; i ++) // 建图
{
for(j = 1 ; j <= n ; j ++)
{
if(!ha[i][j] && i != j)
vert[i].push_back(j) ;
}
}
}
bool isbg(int u , int c) //判断是否为二分图
{
int i ;
for(i = 0 ; i < vert[u].size() ; i ++)
{
int v = vert[u][i] ;
if(blcnt[v] != c)
continue ;
if(color[v] == color[u])
return false ;
if(!color[v])
{
color[v] = 3 - color[u] ;
if(!isbg(v , c))
return false ;
}
}
return true ;
}
void solve()
{
mem(vis , 0) ;
int i ;
for(i = 1 ; i <= n ; i ++)
{
if(!vis[i])
{
tarjan(i , -1) ;
}
}
for(i = 1 ; i <= scnt ; i ++)
{
int j ;
int tmp ;
mem(color , 0) ;
for(j = 0 ; j < bscnt[i].size() ; j ++)
{
tmp = bscnt[i][j] ;
blcnt[tmp] = i ;
}
color[tmp] = 1 ;
if(!isbg(tmp , i))
{
for(j = 0 ; j < bscnt[i].size() ; j ++)
{
tmp = bscnt[i][j] ;
odd[tmp] = true ;
}
}
}
int ans = n ;
for(i = 1 ; i <= n ; i ++)
{
if(odd[i])
ans -- ;
}
OT(ans) ;
puts("") ;
}
int main()
{
while (scanf("%d%d" , &n , &m) != EOF)
{
if(n == 0 && m == 0)
break ;
init() ;
solve() ;
}
return 0 ;
}
												

POJ 2942 Knights of the Round Table - from lanshui_Yang的更多相关文章

  1. POJ 2942 Knights of the Round Table 黑白着色+点双连通分量

    题目来源:POJ 2942 Knights of the Round Table 题意:统计多个个骑士不能參加随意一场会议 每场会议必须至少三个人 排成一个圈 而且相邻的人不能有矛盾 题目给出若干个条 ...

  2. poj 2942 Knights of the Round Table - Tarjan

    Being a knight is a very attractive career: searching for the Holy Grail, saving damsels in distress ...

  3. POJ 2942 Knights of the Round Table

    Knights of the Round Table Time Limit: 7000MS   Memory Limit: 65536K Total Submissions: 10911   Acce ...

  4. poj 2942 Knights of the Round Table 圆桌骑士(双连通分量模板题)

    Knights of the Round Table Time Limit: 7000MS   Memory Limit: 65536K Total Submissions: 9169   Accep ...

  5. POJ 2942 Knights of the Round Table(双连通分量)

    http://poj.org/problem?id=2942 题意 :n个骑士举行圆桌会议,每次会议应至少3个骑士参加,且相互憎恨的骑士不能坐在圆桌旁的相邻位置.如果意见发生分歧,则需要举手表决,因此 ...

  6. poj 2942 Knights of the Round Table(点双连通分量+二分图判定)

    题目链接:http://poj.org/problem?id=2942 题意:n个骑士要举行圆桌会议,但是有些骑士相互仇视,必须满足以下两个条件才能举行: (1)任何两个互相仇视的骑士不能相邻,每个骑 ...

  7. POJ 2942 Knights of the Round Table (点双连通分量)

    题意:多个骑士要开会,3人及以上才能凑一桌,其中部分人已经互相讨厌,肯定不坐在同一桌的相邻位置,而且一桌只能奇数个人才能开台.给出多个人的互相讨厌图,要求多少人开不成会(注:会议不要求同时进行,一个人 ...

  8. POJ 2942.Knights of the Round Table (双连通)

    简要题解: 意在判断哪些点在一个图的  奇环的双连通分量内. tarjan求出所有的点双连通分量,再用二分图染色判断每个双连通分量是否形成了奇环,记录哪些点出现在内奇环内 输出没有在奇环内的点的数目 ...

  9. POJ - 2942 Knights of the Round Table (点双联通分量+二分图判定)

    题意:有N个人要参加会议,围圈而坐,需要举手表决,所以每次会议都必须是奇数个人参加.有M对人互相讨厌,他们的座位不能相邻.问有多少人任意一场会议都不能出席. 分析:给出的M条关系是讨厌,将每个人视作点 ...

随机推荐

  1. ASP.NET、WinForm - 判断整个页面文本框是否为空

    foreach(Control ctrl in Page.Controls) { foreach(Control childc in ctrl.Controls) { switch(childc.Ge ...

  2. Jrebel 6.2.1破解

    个人微信:benyzhous,可以一起探讨 云盘下载链接: http://pan.baidu.com/s/1bnGzMUF 配置: -noverify -javaagent:/Users/chabab ...

  3. 成都大数据Hadoop与Spark技术培训班

    成都大数据Hadoop与Spark技术培训班   中国信息化培训中心特推出了大数据技术架构及应用实战课程培训班,通过专业的大数据Hadoop与Spark技术架构体系与业界真实案例来全面提升大数据工程师 ...

  4. c++ char_traits模板类的实现!!!

    本人写过与此相关的两篇博客,一个是<cstring>头文件的实现,还有一个是<cwchar>的实现.这里的char_traits模板类在此基础上实现. 为了方便.将源码一起封装 ...

  5. Windows Azure使用体验

    Windows Azure在今年6月6日由世纪互联代理在中国运营,目前只能体验,没有开放注册.不过,体验的门槛比较高,只对企业开放,未来大量对外开放使用貌似时间还早.大家都懂得,“国内门槛高”.本人在 ...

  6. Swift - UIColor使用自定义的RGB配色

    1,比如rgb 色值为55. 186 .89 那么给UIColor设置里面要除以255 1 UIColor(red: 55/255, green: 186/255, blue: 89/255, alp ...

  7. web服务器配置方法

    Web服务器概述 Web服务器又称为WWW服务器,它是放置一般网站的服务器.一台Web服务器上可以建立多个网站,各网站的拥有者只需要把做好的网页和相关文件放置在Web服务器的网站中,其它用户就可以用浏 ...

  8. [Python 学习]2.5版yield之学习心得 - limodou的学习记录 - limodou是一个程序员,他关心的焦点是Python, DocBook, Open Source …

    [Python 学习]2.5版yield之学习心得 - limodou的学习记录 - limodou是一个程序员,他关心的焦点是Python, DocBook, Open Source - [Pyth ...

  9. wkhtmtopdf--高分辨率HTML转PDF(一)

    原文:wkhtmtopdf--高分辨率HTML转PDF(一) 一.需求 这次工作中遇到一个需求,要求把网页转换为PDF,穷极了很多的方法,包括尝试了itextsharp来转换,虽然可以实现,但是分辨率 ...

  10. 端口映射工具 redir/socat/xinetd - 运维技术 - 开源中国社区

    端口映射工具 redir/socat/xinetd - 运维技术 - 开源中国社区 端口映射工具 redir/socat/xinetd    10人收藏此文章, 我要收藏 发表于3天前(2013-08 ...