放苹果

Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 30894   Accepted: 19504

Description

把M个同样的苹果放在N个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?(用K表示)5,1,1和1,5,1 是同一种分法。

Input

第一行是测试数据的数目t(0 <= t <= 20)。以下每行均包含二个整数M和N,以空格分开。1<=M,N<=10。

Output

对输入的每组数据M和N,用一行输出相应的K。

Sample Input

1
7 3

Sample Output

8

最基础的整数划分,求将n拆分成不超过m个数之和的方法数
递归法:
       根据n和m的关系,考虑以下几种情况:
       (1)当n=1时,不论m的值为多少(m>0),只有一种划分即{1};
        (2) 当m=1时,不论n的值为多少,只有一种划分即n个1,{1,1,1,...,1};
        (3) 当n=m时,根据划分中是否包含n,可以分为两种情况:
              (a). 划分中包含n的情况,只有一个即{n};
              (b). 划分中不包含n的情况,这时划分中最大的数字也一定比n小,即n的所有(n-1)划分。
              因此 f(n,n) =1 + f(n,n-1);
        (4) 当n<m时,由于划分中不可能出现负数,因此就相当于f(n,n);
        (5) 但n>m时,根据划分中是否包含最大值m,可以分为两种情况:
               (a). 划分中包含m的情况,即{m, {x1,x2,...xi}}, 其中{x1,x2,... xi} 的和为n-m,因此这种情况下
                 为f(n-m,m)
               (b). 划分中不包含m的情况,则划分中所有值都比m小,即n的(m-1)划分,个数为f(n,m-1);
              因此 f(n, m) = f(n-m, m)+f(n,m-1);
      综上所述:
             f(n, m)=   1;                (n=1 or m=1)
                        f(n, n);                        (n<m)
                        1+ f(n, m-1);                (n=m)
                        f(n-m,m)+f(n,m-1);      (n>m)
 //2016.9.1
#include <iostream>
#include <cstdio>
#define N 15 using namespace std; int f(int n, int m)
{
if(n== || m==)return ;
else if(n < m)return f(n, n);
else if(n == m)return (+f(n, n-));
else return f(n-m, m)+f(n, m-);
} int main()
{
int T, n, m;
cin>>T;
while(T--)
{
scanf("%d%d", &n, &m);
int ans = f(n, m);
cout<<ans<<endl;
} return ;
}

POJ1664(整数划分)的更多相关文章

  1. poj1664 放苹果(DPorDFS)&&系列突破(整数划分)

    poj1664放苹果 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 33661   Accepted: 20824 Desc ...

  2. 51nod p1201 整数划分

    1201 整数划分 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 将N分为若干个不同整数的和,有多少种不同的划分方式,例如:n = 6,{6} {1,5} {2, ...

  3. 2014北大研究生推免机试(校内)-复杂的整数划分(DP进阶)

    这是一道典型的整数划分题目,适合正在研究动态规划的同学练练手,但是和上一个随笔一样,我是在Coursera中评测通过的,没有找到适合的OJ有这一道题(找到的ACMer拜托告诉一声~),这道题考察得较全 ...

  4. 整数划分 (区间DP)

    整数划分(四) 时间限制:1000 ms  |  内存限制:65535 KB 难度:3   描述 暑假来了,hrdv 又要留学校在参加ACM集训了,集训的生活非常Happy(ps:你懂得),可是他最近 ...

  5. nyoj 90 整数划分

    点击打开链接 整数划分 时间限制:3000 ms  |  内存限制:65535 KB 难度:3 描述 将正整数n表示成一系列正整数之和:n=n1+n2+-+nk,  其中n1≥n2≥-≥nk≥1,k≥ ...

  6. 整数划分 Integer Partition(二)

    本文是整数划分的第二节,主要介绍整数划分的一些性质. 一 先来弥补一下上一篇文章的遗留问题:要求我们所取的 (n=m1+m2+...+mi )中  m1 m2 ... mi连续,比如5=1+4就不符合 ...

  7. 整数划分 Integer Partition(一)

    话说今天百度面试,可能是由于我表现的不太好,面试官显得有点不耐烦,说话的语气也很具有嘲讽的意思,搞得我有点不爽.Whatever,面试中有问到整数划分问题,回答这个问题过程中被面试官搞的不胜其烦,最后 ...

  8. 51nod1201 整数划分

    01背包显然超时.然后就是一道神dp了.dp[i][j]表示j个数组成i的方案数.O(nsqrt(n)) #include<cstdio> #include<cstring> ...

  9. NYOJ-571 整数划分(三)

    此题是个非常经典的题目,这个题目包含了整数划分(一)和整数划分(二)的所有情形,而且还增加了其它的情形,主要是用递归或者说是递推式来解,只要找到了递推式剩下的任务就是找边界条件了,我觉得边界也是非常重 ...

随机推荐

  1. C#设置word段落首行缩进为0

    PublicVar.m_WordApp.Selection.ParagraphFormat.CharacterUnitFirstLineIndent = ; PublicVar.m_WordApp.S ...

  2. 关于基本视频播放的Demo

    最近在做一个视频的Demo,当然是仿的别人的,现贴出原文地址:http://code4app.com/forum.php?mod=viewthread&tid=8959&highlig ...

  3. sqlserver数据库类型对应Java中的数据类型

    SQL Server 类型 JDBC 类型 (java.sql.Types) Java 语言类型 bigint BIGINT long timestamp binary BINARY byte[] b ...

  4. MySQL create table 语法

    MySQL中create table语句的基本语法是: CREATE [TEMPORARY] TABLE [IF NOT EXISTS] tbl_name     [(create_definitio ...

  5. 使用for循环输出杨辉三角-还是不懂得需要复习

    package com.chongrui.test; /* *使用for循环输出杨辉三角杨辉三角形由数字排列,可以把它看作一个数字表,其基本特征是两侧的数值均为1,其他位置的数值是其正上方的数值与左上 ...

  6. STM32启动模式及API(转)

    源:STM32启动模式及API 我们玩ARM9,一般都是在内存里调试程序,速度飞快.STM32下也可以这样,虽说现在的flash寿命已经很长了,但flash中调试烧录程序还是一个很慢的过程,有时候程序 ...

  7. WeakHashMap和Java引用类型详细解析

    WeakHashMap是种弱引用的HashMap,这是说,WeakHashMap里的key值如果没有外部强引用,在垃圾回收之后,WeakHashMap的对应内容也会被移除掉. 1.1 Java的引用类 ...

  8. poj2528 Mayor's posters(线段树区间覆盖)

    Mayor's posters Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 50888   Accepted: 14737 ...

  9. 为什么建立TCP连接需要三次握手,为什么断开TCP连接需要四次握手,TIME_WAIT状态的意义

    为什么建立TCP连接需要三次握手? 原因:为了应对网络中存在的延迟的重复数组的问题 例子: 假设client发起连接的连接请求报文段在网络中没有丢失,而是在某个网络节点长时间滞留了,导致延迟到达ser ...

  10. 递归添加 另一个ds 里的DataRow 时 报错:该行已经属于另一个表。

    public void create_tree(DataSet ds, int parentid)        { DataSet newds = new DataSet();            ...