DISUBSTR - Distinct Substrings

no tags 

Given a string, we need to find the total number of its distinct substrings.

Input

T- number of test cases. T<=20;
Each test case consists of one string, whose length is <= 1000

Output

For each test case output one number saying the number of distinct substrings.

Example

Sample Input:
2
CCCCC
ABABA

Sample Output:
5
9

Explanation for the testcase with string ABABA: 
len=1 : A,B
len=2 : AB,BA
len=3 : ABA,BAB
len=4 : ABAB,BABA
len=5 : ABABA
Thus, total number of distinct substrings is 9.

分析:字符串中不同子串的个数;

   建立后缀数组对每一个后缀算贡献即可;

代码:

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#include <climits>
#include <cstring>
#include <string>
#include <set>
#include <map>
#include <queue>
#include <stack>
#include <vector>
#include <list>
#define rep(i,m,n) for(i=m;i<=n;i++)
#define rsp(it,s) for(set<int>::iterator it=s.begin();it!=s.end();it++)
#define mod 1000000007
#define inf 0x3f3f3f3f
#define vi vector<int>
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define ll long long
#define ld long double
#define pi acos(-1.0)
#define pii pair<int,int>
#define Lson L, mid, ls[rt]
#define Rson mid+1, R, rs[rt]
#define sys system("pause")
#define freopen freopen("in.txt","r",stdin)
const int maxn=1e3+;
using namespace std;
ll gcd(ll p,ll q){return q==?p:gcd(q,p%q);}
ll qpow(ll p,ll q){ll f=;while(q){if(q&)f=f*p;p=p*p;q>>=;}return f;}
inline ll read()
{
ll x=;int f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int n,m,k,t,cntA[maxn],cntB[maxn],sa[maxn],lev[maxn],height[maxn],A[maxn],B[maxn],tsa[maxn];
char ch[maxn];
void solve()
{
for (int i = ; i < ; i ++) cntA[i] = ;
for (int i = ; i <= n; i ++) cntA[ch[i]] ++;
for (int i = ; i < ; i ++) cntA[i] += cntA[i - ];
for (int i = n; i; i --) sa[cntA[ch[i]] --] = i;
lev[sa[]] = ;
for (int i = ; i <= n; i ++)
{
lev[sa[i]] = lev[sa[i - ]];
if (ch[sa[i]] != ch[sa[i - ]]) lev[sa[i]] ++;
}
for (int l = ; lev[sa[n]] < n; l <<= )
{
for (int i = ; i <= n; i ++) cntA[i] = ;
for (int i = ; i <= n; i ++) cntB[i] = ;
for (int i = ; i <= n; i ++)
{
cntA[A[i] = lev[i]] ++;
cntB[B[i] = (i + l <= n) ? lev[i + l] : ] ++;
}
for (int i = ; i <= n; i ++) cntB[i] += cntB[i - ];
for (int i = n; i; i --) tsa[cntB[B[i]] --] = i;
for (int i = ; i <= n; i ++) cntA[i] += cntA[i - ];
for (int i = n; i; i --) sa[cntA[A[tsa[i]]] --] = tsa[i];
lev[sa[]] = ;
for (int i = ; i <= n; i ++)
{
lev[sa[i]] = lev[sa[i - ]];
if (A[sa[i]] != A[sa[i - ]] || B[sa[i]] != B[sa[i - ]]) lev[sa[i]] ++;
}
}
for (int i = , j = ; i <= n; i ++)
{
if (j) j --;
while (ch[i + j] == ch[sa[lev[i] - ] + j]) j ++;
height[lev[i]] = j;
}
}
int main()
{
int i,j;
scanf("%d",&t);
while(t--)
{
scanf("%s",ch+);
n=strlen(ch+);
solve();
ll ans=;
rep(i,,n)
{
ans+=n-sa[i]+-height[i];
}
printf("%lld\n",ans);
}
//system("Pause");
return ;
}

DISUBSTR - Distinct Substrings的更多相关文章

  1. spoj694 DISUBSTR - Distinct Substrings

    Given a string, we need to find the total number of its distinct substrings. Input T- number of test ...

  2. SPOJ - DISUBSTR Distinct Substrings (后缀数组)

    Given a string, we need to find the total number of its distinct substrings. Input T- number of test ...

  3. SPOJ DISUBSTR Distinct Substrings 后缀数组

    题意:统计母串中包含多少不同的子串 然后这是09年论文<后缀数组——处理字符串的有力工具>中有介绍 公式如下: 原理就是加上新的,减去重的,这题是因为打多校才补的,只能说我是个垃圾 #in ...

  4. SPOJ 694 DISUBSTR - Distinct Substrings

    思路 求本质不同的子串个数,总共重叠的子串个数就是height数组的和 总子串个数-height数组的和即可 代码 #include <cstdio> #include <algor ...

  5. SP694 DISUBSTR - Distinct Substrings

    /* 统计每个节点的max和min, 然后求和即可 min = max[fa] + 1 */ #include<cstdio> #include<algorithm> #inc ...

  6. SPOJ 694&&SPOJ705: Distinct Substrings

    DISUBSTR - Distinct Substrings 链接 题意: 询问有多少不同的子串. 思路: 后缀数组或者SAM. 首先求出后缀数组,然后从对于一个后缀,它有n-sa[i]-1个前缀,其 ...

  7. SPOJ Distinct Substrings(后缀数组求不同子串个数,好题)

    DISUBSTR - Distinct Substrings no tags  Given a string, we need to find the total number of its dist ...

  8. SPOJ - Distinct Substrings,求不同的字串个数!

    DISUBSTR - Distinct Substrings 题意:给你一个长度最多1000的字符串,求不相同的字串的个数. 思路:一个长度为n的字符串最多有(n+1)*n/2个,而height数组已 ...

  9. Distinct Substrings SPOJ - DISUBSTR 后缀数组

    Given a string, we need to find the total number of its distinct substrings. Input T- number of test ...

随机推荐

  1. Node.js:服务器与数据流

    1.Node 常被用来构建服务器,下面代码就是创建了一个服务器. var http = require('http'); var server = http.createServer(); serve ...

  2. mysql创建用户、授权[转]

    一, 创建用户: 命令:CREATE USER 'username'@'host' IDENTIFIED BY 'password'; 说明:username - 你将创建的用户名, host - 指 ...

  3. scale相关设置—颜色设置

    颜色设置,在R的可视化中,应该算是相对比较重要的一项内容,如何把握颜色,很大程度上影响图形的展现效果. 在ggplot的scale设置中,颜色相关的函数较多: scale_fill/colour_hu ...

  4. Windows10 Apache2.4 PHP7 MySQL 5.7安装教程

    最近细细的折腾了win10下PHP环境的安装过程,每次安装总是有小问题,现在总结一下.安装之前需要注意,下载的安装包(除MySQL)外必须统一是64位或者统一时32位. 一. MySQL5.7的安装 ...

  5. CentOS6.4安装go环境

    在官网上下载go1.6.linux-amd64.tar.gz 解压缩并拷贝程序到相应路径下 #tar -zxvf go1.6.linux-amd64.tar.gz #cp -rf go /usr/lo ...

  6. PerformSelector 和 NSInvocation

  7. linux命令 time

    功能:用于计算命令执行的世界 语法:  time command 例如: hbg@root:~/dl$ time ls111     apple.sh  b.txt            duplic ...

  8. HUST 1404 Hamming Distance(字符串)

    Hamming Distance Description Have you ever heard of the Hamming distance. It is the number of positi ...

  9. 使用 mulan-1.5.0 如何构造.arff文件

    1. 为什么要使用mulan 我用mulan来做多标签数据的分类,但是mulan的输入数据由两个文件控制,一个是data.arff文件,这个文件列出的所有的属性以及这些属性值的类型和他们对应的值.la ...

  10. Chapter 16_3 多重继承

    在Lua中进行面向对象编程时有几种方法,上一小结介绍了一种使用__index元方法的做法. 下面要介绍另一种方法,可以在Lua中实现多继承. 关键一点,在于用函数作为__index元字段. 多重继承意 ...