DISUBSTR - Distinct Substrings
DISUBSTR - Distinct Substrings
Given a string, we need to find the total number of its distinct substrings.
Input
T- number of test cases. T<=20;
Each test case consists of one string, whose length is <= 1000
Output
For each test case output one number saying the number of distinct substrings.
Example
Sample Input:
2
CCCCC
ABABA
Sample Output:
5
9
Explanation for the testcase with string ABABA:
len=1 : A,B
len=2 : AB,BA
len=3 : ABA,BAB
len=4 : ABAB,BABA
len=5 : ABABA
Thus, total number of distinct substrings is 9.
分析:字符串中不同子串的个数;
建立后缀数组对每一个后缀算贡献即可;
代码:
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#include <climits>
#include <cstring>
#include <string>
#include <set>
#include <map>
#include <queue>
#include <stack>
#include <vector>
#include <list>
#define rep(i,m,n) for(i=m;i<=n;i++)
#define rsp(it,s) for(set<int>::iterator it=s.begin();it!=s.end();it++)
#define mod 1000000007
#define inf 0x3f3f3f3f
#define vi vector<int>
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define ll long long
#define ld long double
#define pi acos(-1.0)
#define pii pair<int,int>
#define Lson L, mid, ls[rt]
#define Rson mid+1, R, rs[rt]
#define sys system("pause")
#define freopen freopen("in.txt","r",stdin)
const int maxn=1e3+;
using namespace std;
ll gcd(ll p,ll q){return q==?p:gcd(q,p%q);}
ll qpow(ll p,ll q){ll f=;while(q){if(q&)f=f*p;p=p*p;q>>=;}return f;}
inline ll read()
{
ll x=;int f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int n,m,k,t,cntA[maxn],cntB[maxn],sa[maxn],lev[maxn],height[maxn],A[maxn],B[maxn],tsa[maxn];
char ch[maxn];
void solve()
{
for (int i = ; i < ; i ++) cntA[i] = ;
for (int i = ; i <= n; i ++) cntA[ch[i]] ++;
for (int i = ; i < ; i ++) cntA[i] += cntA[i - ];
for (int i = n; i; i --) sa[cntA[ch[i]] --] = i;
lev[sa[]] = ;
for (int i = ; i <= n; i ++)
{
lev[sa[i]] = lev[sa[i - ]];
if (ch[sa[i]] != ch[sa[i - ]]) lev[sa[i]] ++;
}
for (int l = ; lev[sa[n]] < n; l <<= )
{
for (int i = ; i <= n; i ++) cntA[i] = ;
for (int i = ; i <= n; i ++) cntB[i] = ;
for (int i = ; i <= n; i ++)
{
cntA[A[i] = lev[i]] ++;
cntB[B[i] = (i + l <= n) ? lev[i + l] : ] ++;
}
for (int i = ; i <= n; i ++) cntB[i] += cntB[i - ];
for (int i = n; i; i --) tsa[cntB[B[i]] --] = i;
for (int i = ; i <= n; i ++) cntA[i] += cntA[i - ];
for (int i = n; i; i --) sa[cntA[A[tsa[i]]] --] = tsa[i];
lev[sa[]] = ;
for (int i = ; i <= n; i ++)
{
lev[sa[i]] = lev[sa[i - ]];
if (A[sa[i]] != A[sa[i - ]] || B[sa[i]] != B[sa[i - ]]) lev[sa[i]] ++;
}
}
for (int i = , j = ; i <= n; i ++)
{
if (j) j --;
while (ch[i + j] == ch[sa[lev[i] - ] + j]) j ++;
height[lev[i]] = j;
}
}
int main()
{
int i,j;
scanf("%d",&t);
while(t--)
{
scanf("%s",ch+);
n=strlen(ch+);
solve();
ll ans=;
rep(i,,n)
{
ans+=n-sa[i]+-height[i];
}
printf("%lld\n",ans);
}
//system("Pause");
return ;
}
DISUBSTR - Distinct Substrings的更多相关文章
- spoj694 DISUBSTR - Distinct Substrings
Given a string, we need to find the total number of its distinct substrings. Input T- number of test ...
- SPOJ - DISUBSTR Distinct Substrings (后缀数组)
Given a string, we need to find the total number of its distinct substrings. Input T- number of test ...
- SPOJ DISUBSTR Distinct Substrings 后缀数组
题意:统计母串中包含多少不同的子串 然后这是09年论文<后缀数组——处理字符串的有力工具>中有介绍 公式如下: 原理就是加上新的,减去重的,这题是因为打多校才补的,只能说我是个垃圾 #in ...
- SPOJ 694 DISUBSTR - Distinct Substrings
思路 求本质不同的子串个数,总共重叠的子串个数就是height数组的和 总子串个数-height数组的和即可 代码 #include <cstdio> #include <algor ...
- SP694 DISUBSTR - Distinct Substrings
/* 统计每个节点的max和min, 然后求和即可 min = max[fa] + 1 */ #include<cstdio> #include<algorithm> #inc ...
- SPOJ 694&&SPOJ705: Distinct Substrings
DISUBSTR - Distinct Substrings 链接 题意: 询问有多少不同的子串. 思路: 后缀数组或者SAM. 首先求出后缀数组,然后从对于一个后缀,它有n-sa[i]-1个前缀,其 ...
- SPOJ Distinct Substrings(后缀数组求不同子串个数,好题)
DISUBSTR - Distinct Substrings no tags Given a string, we need to find the total number of its dist ...
- SPOJ - Distinct Substrings,求不同的字串个数!
DISUBSTR - Distinct Substrings 题意:给你一个长度最多1000的字符串,求不相同的字串的个数. 思路:一个长度为n的字符串最多有(n+1)*n/2个,而height数组已 ...
- Distinct Substrings SPOJ - DISUBSTR 后缀数组
Given a string, we need to find the total number of its distinct substrings. Input T- number of test ...
随机推荐
- Spring Security(03)——核心类简介
目录 1.1 Authentication 1.2 SecurityContextHolder 1.3 AuthenticationManager和Authentication ...
- 修改weblogic中StuckThreadMaxTime参数
your_domain->Environment ->Servers ->your_server->Configuration->Tuning->Stuck Thr ...
- stl 生产全排列 next_permutation
#include<stdio.h>#include<algorithm>using namespace std;int main(){ int n,p[10]; scanf(& ...
- 【卷一】正则四 |> 练习
参考:<Python核心编程(3rd)>—P39 1-1 识别后续的字符串: "bat", "bit", "but" &quo ...
- BFS详解
广度优先搜索详解 1. 也称宽度优先搜索,顾名思义,就是将一棵树一层一层往下搜.算法首先搜索和s距离为k的所有顶点,然后再去搜索和S距离为k+l的其他顶点.BFS是一种完备策略,即只 ...
- CSS居中方法
css居中方法非常多,根据工作的实际情况采用恰当方法,可取到事半功倍的效果. 就常见的一些居中方法整理如下: 代码如下: <div class="con"> <d ...
- 设计模式4 外观模式 FACADE
一个外观是一个类,其提供的功能介于工具箱的功能和完整系统的功能之间,并为一个包或者一个子系统中的类提供了简化的使用方式.
- SQL Server 2012中快速插入批量数据的示例及疑惑
SQL Server 2008中SQL应用系列--目录索引 今天在做一个案例演示时,在SQL Server 2012中使用Insert语句插入1万条数据,结果遇到了一个奇怪的现象,现将过程分享出来,以 ...
- 网络模块(net, http)小解
net模块可用来创建TCP服务器来接收网络请求,它提供了创建客户端以及服务端的方法 服务端: 创建服务器: net.createServer([,options], connectionListene ...
- php 验证码类
<?php class Vcode { private $width; //宽 private $height; //高 private $num; //数量 private ...