DISUBSTR - Distinct Substrings
DISUBSTR - Distinct Substrings
Given a string, we need to find the total number of its distinct substrings.
Input
T- number of test cases. T<=20;
Each test case consists of one string, whose length is <= 1000
Output
For each test case output one number saying the number of distinct substrings.
Example
Sample Input:
2
CCCCC
ABABA
Sample Output:
5
9
Explanation for the testcase with string ABABA:
len=1 : A,B
len=2 : AB,BA
len=3 : ABA,BAB
len=4 : ABAB,BABA
len=5 : ABABA
Thus, total number of distinct substrings is 9.
分析:字符串中不同子串的个数;
建立后缀数组对每一个后缀算贡献即可;
代码:
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#include <climits>
#include <cstring>
#include <string>
#include <set>
#include <map>
#include <queue>
#include <stack>
#include <vector>
#include <list>
#define rep(i,m,n) for(i=m;i<=n;i++)
#define rsp(it,s) for(set<int>::iterator it=s.begin();it!=s.end();it++)
#define mod 1000000007
#define inf 0x3f3f3f3f
#define vi vector<int>
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define ll long long
#define ld long double
#define pi acos(-1.0)
#define pii pair<int,int>
#define Lson L, mid, ls[rt]
#define Rson mid+1, R, rs[rt]
#define sys system("pause")
#define freopen freopen("in.txt","r",stdin)
const int maxn=1e3+;
using namespace std;
ll gcd(ll p,ll q){return q==?p:gcd(q,p%q);}
ll qpow(ll p,ll q){ll f=;while(q){if(q&)f=f*p;p=p*p;q>>=;}return f;}
inline ll read()
{
ll x=;int f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int n,m,k,t,cntA[maxn],cntB[maxn],sa[maxn],lev[maxn],height[maxn],A[maxn],B[maxn],tsa[maxn];
char ch[maxn];
void solve()
{
for (int i = ; i < ; i ++) cntA[i] = ;
for (int i = ; i <= n; i ++) cntA[ch[i]] ++;
for (int i = ; i < ; i ++) cntA[i] += cntA[i - ];
for (int i = n; i; i --) sa[cntA[ch[i]] --] = i;
lev[sa[]] = ;
for (int i = ; i <= n; i ++)
{
lev[sa[i]] = lev[sa[i - ]];
if (ch[sa[i]] != ch[sa[i - ]]) lev[sa[i]] ++;
}
for (int l = ; lev[sa[n]] < n; l <<= )
{
for (int i = ; i <= n; i ++) cntA[i] = ;
for (int i = ; i <= n; i ++) cntB[i] = ;
for (int i = ; i <= n; i ++)
{
cntA[A[i] = lev[i]] ++;
cntB[B[i] = (i + l <= n) ? lev[i + l] : ] ++;
}
for (int i = ; i <= n; i ++) cntB[i] += cntB[i - ];
for (int i = n; i; i --) tsa[cntB[B[i]] --] = i;
for (int i = ; i <= n; i ++) cntA[i] += cntA[i - ];
for (int i = n; i; i --) sa[cntA[A[tsa[i]]] --] = tsa[i];
lev[sa[]] = ;
for (int i = ; i <= n; i ++)
{
lev[sa[i]] = lev[sa[i - ]];
if (A[sa[i]] != A[sa[i - ]] || B[sa[i]] != B[sa[i - ]]) lev[sa[i]] ++;
}
}
for (int i = , j = ; i <= n; i ++)
{
if (j) j --;
while (ch[i + j] == ch[sa[lev[i] - ] + j]) j ++;
height[lev[i]] = j;
}
}
int main()
{
int i,j;
scanf("%d",&t);
while(t--)
{
scanf("%s",ch+);
n=strlen(ch+);
solve();
ll ans=;
rep(i,,n)
{
ans+=n-sa[i]+-height[i];
}
printf("%lld\n",ans);
}
//system("Pause");
return ;
}
DISUBSTR - Distinct Substrings的更多相关文章
- spoj694 DISUBSTR - Distinct Substrings
Given a string, we need to find the total number of its distinct substrings. Input T- number of test ...
- SPOJ - DISUBSTR Distinct Substrings (后缀数组)
Given a string, we need to find the total number of its distinct substrings. Input T- number of test ...
- SPOJ DISUBSTR Distinct Substrings 后缀数组
题意:统计母串中包含多少不同的子串 然后这是09年论文<后缀数组——处理字符串的有力工具>中有介绍 公式如下: 原理就是加上新的,减去重的,这题是因为打多校才补的,只能说我是个垃圾 #in ...
- SPOJ 694 DISUBSTR - Distinct Substrings
思路 求本质不同的子串个数,总共重叠的子串个数就是height数组的和 总子串个数-height数组的和即可 代码 #include <cstdio> #include <algor ...
- SP694 DISUBSTR - Distinct Substrings
/* 统计每个节点的max和min, 然后求和即可 min = max[fa] + 1 */ #include<cstdio> #include<algorithm> #inc ...
- SPOJ 694&&SPOJ705: Distinct Substrings
DISUBSTR - Distinct Substrings 链接 题意: 询问有多少不同的子串. 思路: 后缀数组或者SAM. 首先求出后缀数组,然后从对于一个后缀,它有n-sa[i]-1个前缀,其 ...
- SPOJ Distinct Substrings(后缀数组求不同子串个数,好题)
DISUBSTR - Distinct Substrings no tags Given a string, we need to find the total number of its dist ...
- SPOJ - Distinct Substrings,求不同的字串个数!
DISUBSTR - Distinct Substrings 题意:给你一个长度最多1000的字符串,求不相同的字串的个数. 思路:一个长度为n的字符串最多有(n+1)*n/2个,而height数组已 ...
- Distinct Substrings SPOJ - DISUBSTR 后缀数组
Given a string, we need to find the total number of its distinct substrings. Input T- number of test ...
随机推荐
- 关于通过addClass与removeClass用jquery控制有良好兼容的CSS3样式
hi:)好久不见~最近被jquery的animate对某些CSS3特性不兼容搞的头晕眼花,果断百度,阅读了一些高手的博客后突然发现平常很少用到的addClass和removeClass属性居然还可以这 ...
- 后台验证url是不是有效的链接
/** * 判断链接是否有效 * 输入链接 * 返回true或者false */ public static boolean isValid(String strLink){ URL url=null ...
- 一、ASP.NET Routing路由(深入解析路由系统架构原理)
阅读目录: 1.开篇介绍 2.ASP.NET Routing 路由对象模型的位置 3.ASP.NET Routing 路由对象模型的入口 4.ASP.NET Routing 路由对象模型的内部结构 4 ...
- OSG+Python
测试平台(1)Fedora19 x86 [cc@localhost ~]$ lspci | grep VGA :) :00.0 VGA compatible controller: NVIDIA Co ...
- Openjudge-计算概论(A)-年龄与疾病
描述: 某医院想统计一下某项疾病的获得与否与年龄是否有关,需要对以前的诊断记录进行整理. 输入共2行,第一行为过往病人的数目n(0 < n <= 100),第二行为每个病人患病时的年龄.输 ...
- linux安装配置solr
一.JDK的安装和配置 下载.解压jdk-7u79-linux-x64.gz 1.tar -zxvf jdk-7u79-linux-x64.gz -c /usr/java/ 解压到/usr/java/ ...
- AFNetworking 关于JSON text did not start with array or object and option to allow fragments not set 错误
AFHTTPSessionManager *manager =[AFHTTPSessionManager manager]; [manager GET:@"http://www.baidu. ...
- NFS挂载故障卡死的问题
NFS挂载故障卡死的问题 默认是硬的,改成软的.比如:mount -t nfs -o rw,vers=4,noacl,nocto,noatime,nodiratime,rsize=131072,wsi ...
- 17.从键盘上输入一个正整数n,请按照以下五行杨辉三角形的显示方式, 输出杨辉三角形的前n行。请采用循环控制语句来实现。 (三角形腰上的数为1,其他位置的数为其上一行相邻两个数之和。) 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1
17.从键盘上输入一个正整数n,请按照以下五行杨辉三角形的显示方式, 输出杨辉三角形的前n行.请采用循环控制语句来实现. (三角形腰上的数为1,其他位置的数为其上一行相邻两个数之和.) 1 1 1 1 ...
- js 技巧
用于浮窗跳转至父窗口 parent.document.location.href='/xxx/xxx.htm'; 取父窗口的元素 window.parent.$('#xxx'); 正常跳转 windo ...