Bob’s Race
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 378   Accepted: 119

Description

Bob wants to hold a race to encourage people to do sports. He has got trouble in choosing the route. There are N houses and N - 1 roads in his village. Each road connects two houses, and all houses are connected together. To make the race more interesting, he requires that every participant must start from a different house and run AS FAR AS POSSIBLE without passing a road more than once. The distance difference between the one who runs the longest distance and the one who runs the shortest distance is called “race difference” by Bob. Bob does not want the “race difference”to be more than Q. The houses are numbered from 1 to N. Bob wants that the No. of all starting house must be consecutive. He is now asking you for help. He wants to know the maximum number of starting houses he can choose, by other words, the maximum number of people who can take part in his race.

Input

There are several test cases. 

The first line of each test case contains two integers N and M. N is the number of houses, M is the number of queries. 

The following N-1 lines, each contains three integers, x, y and z, indicating that there is a road of length z connecting house x and house y. 

The following M lines are the queries. Each line contains an integer Q, asking that at most how many people can take part in Bob’s race according to the above mentioned rules and under the condition that the“race difference”is no more than Q.

The input ends with N = 0 and M = 0.

(N<=50000 M<=500 1<=x,y<=N 0<=z<=5000 Q<=10000000) 

Output

For each test case, you should output the answer in a line for each query.

Sample Input

5 5
1 2 3
2 3 4
4 5 3
3 4 2
1
2
3
4
5
0 0

Sample Output

1
3
3
3
5

Source


题目大意:告诉n,m , 表示一棵树n个节点,接下来n-1条边将n个节点,m表示m组查询q,查询最长的连续区间差值不超过q的长度。

解体思路:与我的   
poj 3162 Walking Race (DFS + 线段树) 有点类似,但是,比那个复杂,不同在那个只有一次查询,这次m次查询,那个效率 O( n*lgn ),如果用那个方法,这次也就是
 O(m* n*lgn )的效率,实验发现超时了,最后用了 rmq算法代替了线段树,用rmq预处理好,查询每次区间的效率为 1 而不是 lgn ,所以效率变为   O(m* n),花了 1秒左右AC。 

#include <iostream>
#include <cstdio>
#include <climits>
#include <map>
#include <vector>
#include <algorithm>
using namespace std; const int maxn=100010; struct edge{
int u,v,w;
int next;
edge(int u0=0,int v0=0,int w0=0){ u=u0;v=v0;w=w0;}
}e[maxn*2]; int n,m,cnt,head[maxn],d[maxn],dx[maxn],dy[maxn],qmin[maxn],qmax[maxn],mx,mn;
int maxsum[maxn][20],minsum[maxn][20],flog[maxn]; void initial(){
cnt=0;
for(int i=0;i<=n;i++) head[i]=-1;
} void addedge(int u,int v,int w){
e[cnt]=edge(u,v,w);
e[cnt].next=head[u];
head[u]=cnt++;
} void input(){
int x,y,w0;
for(int i=2;i<=n;i++){
scanf("%d%d%d",&x,&y,&w0);
addedge(x,y,w0);
addedge(y,x,w0);
}
} void dfs(int u,int fa,int dis,int *d){
for(int i=head[u];i!=-1;i=e[i].next){
int v=e[i].v,w=e[i].w;
if(v!=fa) dfs(v,u,d[v]=dis+w,d);
}
} void solve1(){
int x=1,y=1;
dfs(1,-1,d[1]=0,d);
for(int i=1;i<=n;i++) if(d[x]<d[i]) x=i;
dfs(x,-1,dx[x]=0,dx);
for(int i=1;i<=n;i++) if(dx[y]<dx[i]) y=i;
dfs(y,-1,dy[y]=0,dy);
for(int i=1;i<=n;i++) d[i]=max(dx[i],dy[i]);
//for(int i=1;i<=n;i++) cout<<"dis["<<i<<"]:"<<d[i]<<endl;
} void getrmq(){
int r=2,cnt=0;
for(int i=1;i<=n;i++){
if(i<r) flog[i]=cnt;
else{
flog[i]=++cnt;
r=r<<1;
}
}
for(int i=1;i<=n;i++){
maxsum[i][0]=d[i];
minsum[i][0]=d[i];
}
for(int j=1;j<=flog[n];j++)
for(int i=1;i<=n;i++){
if(i+(1<<j)-1<=n){
maxsum[i][j]=max(maxsum[i][j-1],maxsum[i+(1<<(j-1))][j-1]);
minsum[i][j]=min(minsum[i][j-1],minsum[i+(1<<(j-1))][j-1]);
}
}
} int getmin(int l,int r){
int x=flog[r-l+1];
return min(minsum[l][x],minsum[r-(1<<x)+1][x]);
} int getmax(int l,int r){
int x=flog[r-l+1];
return max(maxsum[l][x],maxsum[r-(1<<x)+1][x]);
} void solve2(){
int be=1,en=1,ans=1,q=1;
map <int,int> mp;
vector<int> v;
map <int,int>::iterator it;
for(int i=0;i<m;i++){
scanf("%d",&q);
mp[q]=0;
v.push_back(q);
}
for(it=mp.begin();it!=mp.end();it++){
int be=1,en=be+ans-1;
while(en<=n){
mn=getmin(be,en),mx=getmax(be,en);
if(mx-mn<=(it->first)){
ans=max(en-be+1,ans);
en++;
}else{
be++;
en=max(en,be+ans-1);
}
}
it->second=ans;
}
for(int i=0;i<m;i++) printf("%d\n",mp[v[i]]);
} void computing(){
solve1();
getrmq();
solve2();
} int main(){
while(scanf("%d%d",&n,&m)!=EOF && (n||m) ){
initial();
input();
computing();
}
return 0;
}

POJ 4003 Bob’s Race && HDU4123 Bob’s Race (dfs+rmq)的更多相关文章

  1. POJ 3207 Ikki's Story IV - Panda's Trick(2-sat问题)

    POJ 3207 Ikki's Story IV - Panda's Trick(2-sat问题) Description liympanda, one of Ikki's friend, likes ...

  2. POJ 3083 -- Children of the Candy Corn(DFS+BFS)TLE

    POJ 3083 -- Children of the Candy Corn(DFS+BFS) 题意: 给定一个迷宫,S是起点,E是终点,#是墙不可走,.可以走 1)先输出左转优先时,从S到E的步数 ...

  3. [poj 2331] Water pipe ID A*迭代加深搜索(dfs)

    Water pipe Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 2265 Accepted: 602 Description ...

  4. poj 1724:ROADS(DFS + 剪枝)

    ROADS Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10777   Accepted: 3961 Descriptio ...

  5. poj 3083 Children of the Candy Corn(DFS+BFS)

    做了1天,总是各种错误,很无语 最后还是参考大神的方法 题目:http://poj.org/problem?id=3083 题意:从s到e找分别按照左侧优先和右侧优先的最短路径,和实际的最短路径 DF ...

  6. POJ 1564(HDU 1258 ZOJ 1711) Sum It Up(DFS)

    题目链接:http://poj.org/problem?id=1564 题目大意:给定一个整数t,和n个元素组成的集合.求能否用该集合中的元素和表示该整数,如果可以输出所有可行解.1<=n< ...

  7. POJ 1321-棋盘问题(DFS 递归)

    POJ 1321-棋盘问题 K - DFS Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%I64d & %I6 ...

  8. poj 1011 Sticks (DFS+剪枝)

    Sticks Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 127771   Accepted: 29926 Descrip ...

  9. 数独问题的介绍及POJ 2676-Sudoku(dfs+剪枝)

    知道是数独问题后犹豫了一下要不要做(好像很难的样纸==.),用dfs并剪枝,是一道挺规范的搜索题. 先介绍以下数独吧- 数独(Sudoku)是一种运用纸.笔进行演算的逻辑游戏.玩家需要根据9×9盘面上 ...

随机推荐

  1. 三家DirectUI的商业公司

    目前正在研究DirectUI技术,分享一点心得给大家.关于DirectUI技术的介绍我在这里就不说了,可以上Google查一下,非常丰富.目前使用DirectUI技术开发的软件产品原来原丰富,比如QQ ...

  2. 基于visual Studio2013解决面试题之1409基数排序

     题目

  3. 继承Application实现Android数据共享

         Application类 在Android中,启动一个应用,首先会初始化Application,然后再通过它检查AndroidManifest.xml清单文件,选择须要首先启动的Activi ...

  4. JAVA EE 项目经常使用知识 之AJAX技术实现select下拉列表联动的两种使用方法(让你真正理解ajax)

    ajax 下拉列表联动的使用方法. ajax的定义: AJAX 是一种用于创建高速动态网页的技术. 通过在后台与server进行少量数据交换,AJAX 能够使网页实现异步更新.这意味着能够在不又一次载 ...

  5. Cocos2D-X学习笔记 3 从一个场景切换到还有一个场景

    工厂方法一般写法 StartLayer * StartLayer::create() { StartLayer *sl = new StartLayer(); sl->init(); sl-&g ...

  6. 杂题_POJ上的过桥问题

    本文出自:http://blog.csdn.net/svitter 过桥问题解释:一条船能够坐两个人,可是有非常多人要过河,所以送过一个人去,还有一个人还要回来接.使全部人过河之后时间最短,怎样求? ...

  7. Mac 安装配置启动Tomcat

    Tomcat Mac 下的安装: TomCat 下载地址,例如: http://tomcat.apache.org/download-70.cgi 在Mac 上下载的时候,下载tar.gz包 下载完成 ...

  8. GoldentGate Oracle to Oracle 初始化具体解释

    一.安装GoldenGate[源端,目标端] 1.创建ogg文件夹 [root@source ~]# mkdir /DBSoft/ogg [root@source ~]# cd /DBSoft/ogg ...

  9. 修改XPMenu让ToolButton在Down=True时正确显示

    XPMenu是一个不错的程序界面效果控件,但它也存在不少不足之处.我最近又对它作了一点修改. 原因是我在程序里有一个ToolButton,其Style=tbsButton,当Down=True时,XP ...

  10. BSGS_Baby steps giant steps算法

    BSGS这个主要是用来解决这个题: A^x=B(mod C)(C是质数),都是整数,已知A.B.C求x. 在具体的题目中,C一般是所有可能事件的总数. 解: 设m = ceil(sqrt(C))(ce ...