Bob’s Race
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 378   Accepted: 119

Description

Bob wants to hold a race to encourage people to do sports. He has got trouble in choosing the route. There are N houses and N - 1 roads in his village. Each road connects two houses, and all houses are connected together. To make the race more interesting, he requires that every participant must start from a different house and run AS FAR AS POSSIBLE without passing a road more than once. The distance difference between the one who runs the longest distance and the one who runs the shortest distance is called “race difference” by Bob. Bob does not want the “race difference”to be more than Q. The houses are numbered from 1 to N. Bob wants that the No. of all starting house must be consecutive. He is now asking you for help. He wants to know the maximum number of starting houses he can choose, by other words, the maximum number of people who can take part in his race.

Input

There are several test cases. 

The first line of each test case contains two integers N and M. N is the number of houses, M is the number of queries. 

The following N-1 lines, each contains three integers, x, y and z, indicating that there is a road of length z connecting house x and house y. 

The following M lines are the queries. Each line contains an integer Q, asking that at most how many people can take part in Bob’s race according to the above mentioned rules and under the condition that the“race difference”is no more than Q.

The input ends with N = 0 and M = 0.

(N<=50000 M<=500 1<=x,y<=N 0<=z<=5000 Q<=10000000) 

Output

For each test case, you should output the answer in a line for each query.

Sample Input

5 5
1 2 3
2 3 4
4 5 3
3 4 2
1
2
3
4
5
0 0

Sample Output

1
3
3
3
5

Source


题目大意:告诉n,m , 表示一棵树n个节点,接下来n-1条边将n个节点,m表示m组查询q,查询最长的连续区间差值不超过q的长度。

解体思路:与我的   
poj 3162 Walking Race (DFS + 线段树) 有点类似,但是,比那个复杂,不同在那个只有一次查询,这次m次查询,那个效率 O( n*lgn ),如果用那个方法,这次也就是
 O(m* n*lgn )的效率,实验发现超时了,最后用了 rmq算法代替了线段树,用rmq预处理好,查询每次区间的效率为 1 而不是 lgn ,所以效率变为   O(m* n),花了 1秒左右AC。 

#include <iostream>
#include <cstdio>
#include <climits>
#include <map>
#include <vector>
#include <algorithm>
using namespace std; const int maxn=100010; struct edge{
int u,v,w;
int next;
edge(int u0=0,int v0=0,int w0=0){ u=u0;v=v0;w=w0;}
}e[maxn*2]; int n,m,cnt,head[maxn],d[maxn],dx[maxn],dy[maxn],qmin[maxn],qmax[maxn],mx,mn;
int maxsum[maxn][20],minsum[maxn][20],flog[maxn]; void initial(){
cnt=0;
for(int i=0;i<=n;i++) head[i]=-1;
} void addedge(int u,int v,int w){
e[cnt]=edge(u,v,w);
e[cnt].next=head[u];
head[u]=cnt++;
} void input(){
int x,y,w0;
for(int i=2;i<=n;i++){
scanf("%d%d%d",&x,&y,&w0);
addedge(x,y,w0);
addedge(y,x,w0);
}
} void dfs(int u,int fa,int dis,int *d){
for(int i=head[u];i!=-1;i=e[i].next){
int v=e[i].v,w=e[i].w;
if(v!=fa) dfs(v,u,d[v]=dis+w,d);
}
} void solve1(){
int x=1,y=1;
dfs(1,-1,d[1]=0,d);
for(int i=1;i<=n;i++) if(d[x]<d[i]) x=i;
dfs(x,-1,dx[x]=0,dx);
for(int i=1;i<=n;i++) if(dx[y]<dx[i]) y=i;
dfs(y,-1,dy[y]=0,dy);
for(int i=1;i<=n;i++) d[i]=max(dx[i],dy[i]);
//for(int i=1;i<=n;i++) cout<<"dis["<<i<<"]:"<<d[i]<<endl;
} void getrmq(){
int r=2,cnt=0;
for(int i=1;i<=n;i++){
if(i<r) flog[i]=cnt;
else{
flog[i]=++cnt;
r=r<<1;
}
}
for(int i=1;i<=n;i++){
maxsum[i][0]=d[i];
minsum[i][0]=d[i];
}
for(int j=1;j<=flog[n];j++)
for(int i=1;i<=n;i++){
if(i+(1<<j)-1<=n){
maxsum[i][j]=max(maxsum[i][j-1],maxsum[i+(1<<(j-1))][j-1]);
minsum[i][j]=min(minsum[i][j-1],minsum[i+(1<<(j-1))][j-1]);
}
}
} int getmin(int l,int r){
int x=flog[r-l+1];
return min(minsum[l][x],minsum[r-(1<<x)+1][x]);
} int getmax(int l,int r){
int x=flog[r-l+1];
return max(maxsum[l][x],maxsum[r-(1<<x)+1][x]);
} void solve2(){
int be=1,en=1,ans=1,q=1;
map <int,int> mp;
vector<int> v;
map <int,int>::iterator it;
for(int i=0;i<m;i++){
scanf("%d",&q);
mp[q]=0;
v.push_back(q);
}
for(it=mp.begin();it!=mp.end();it++){
int be=1,en=be+ans-1;
while(en<=n){
mn=getmin(be,en),mx=getmax(be,en);
if(mx-mn<=(it->first)){
ans=max(en-be+1,ans);
en++;
}else{
be++;
en=max(en,be+ans-1);
}
}
it->second=ans;
}
for(int i=0;i<m;i++) printf("%d\n",mp[v[i]]);
} void computing(){
solve1();
getrmq();
solve2();
} int main(){
while(scanf("%d%d",&n,&m)!=EOF && (n||m) ){
initial();
input();
computing();
}
return 0;
}

POJ 4003 Bob’s Race && HDU4123 Bob’s Race (dfs+rmq)的更多相关文章

  1. POJ 3207 Ikki's Story IV - Panda's Trick(2-sat问题)

    POJ 3207 Ikki's Story IV - Panda's Trick(2-sat问题) Description liympanda, one of Ikki's friend, likes ...

  2. POJ 3083 -- Children of the Candy Corn(DFS+BFS)TLE

    POJ 3083 -- Children of the Candy Corn(DFS+BFS) 题意: 给定一个迷宫,S是起点,E是终点,#是墙不可走,.可以走 1)先输出左转优先时,从S到E的步数 ...

  3. [poj 2331] Water pipe ID A*迭代加深搜索(dfs)

    Water pipe Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 2265 Accepted: 602 Description ...

  4. poj 1724:ROADS(DFS + 剪枝)

    ROADS Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10777   Accepted: 3961 Descriptio ...

  5. poj 3083 Children of the Candy Corn(DFS+BFS)

    做了1天,总是各种错误,很无语 最后还是参考大神的方法 题目:http://poj.org/problem?id=3083 题意:从s到e找分别按照左侧优先和右侧优先的最短路径,和实际的最短路径 DF ...

  6. POJ 1564(HDU 1258 ZOJ 1711) Sum It Up(DFS)

    题目链接:http://poj.org/problem?id=1564 题目大意:给定一个整数t,和n个元素组成的集合.求能否用该集合中的元素和表示该整数,如果可以输出所有可行解.1<=n< ...

  7. POJ 1321-棋盘问题(DFS 递归)

    POJ 1321-棋盘问题 K - DFS Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%I64d & %I6 ...

  8. poj 1011 Sticks (DFS+剪枝)

    Sticks Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 127771   Accepted: 29926 Descrip ...

  9. 数独问题的介绍及POJ 2676-Sudoku(dfs+剪枝)

    知道是数独问题后犹豫了一下要不要做(好像很难的样纸==.),用dfs并剪枝,是一道挺规范的搜索题. 先介绍以下数独吧- 数独(Sudoku)是一种运用纸.笔进行演算的逻辑游戏.玩家需要根据9×9盘面上 ...

随机推荐

  1. UML02-用例图

    1.泛化表示一般和特殊的关系.用例之间存在泛化关系,参与者之间存在泛化关系,参与者和用例之间存在泛化关系. 2.画出用例图. 系统允许管理员通过磁盘加载存货数据来运行存货清单报告: 管理员通过从磁盘加 ...

  2. 深入浅出 消息队列 ActiveMQ(转)

    一. 概述与介绍 ActiveMQ 是Apache出品,最流行的.功能强大的即时通讯和集成模式的开源服务器.ActiveMQ 是一个完全支持JMS1.1和J2EE 1.4规范的 JMS Provide ...

  3. HDU 1251 统计难题 (字符串-Trie树)

    统计难题 Problem Description Ignatius近期遇到一个难题,老师交给他非常多单词(仅仅有小写字母组成,不会有反复的单词出现),如今老师要他统计出以某个字符串为前缀的单词数量(单 ...

  4. 3DShader之立方体环境映射(cubic environment mapping)

    前面讲了球形环境映射,然而目前采用更多的是立方体环境映射.国际惯例:上图先: 1.反射: 2.折射 3.fresnel(反射+折射) 4.色散 好了,大概讲下原理, 立方体纹理我就不多讲了,它以一个3 ...

  5. ActivityManager

    android.app.ActivityManager 这个类主要用来管理全部设备上的Activities. 权限:android.permission.GET_TASKS 方法:| 返回类型     ...

  6. CSU1664: 防水堤坝

    Description 在太平洋的一个小岛上,岛民想要建立一个环岛的堤坝,我们能够将小岛简化为一个二维平面,你须要使用K条边(这些边要么是水平或者垂直长度为1的边,要么是45度倾斜的长度为√2的边)围 ...

  7. QNX 线程 调度策略 优先级 时钟频率 同步

    /* * barrier1.c */ #include <stdio.h>#include <unistd.h>#include <stdlib.h>#includ ...

  8. LPCTSTR

    LPCTSTR类型: L表示long指针 这是为了兼容Windows 3.1等16位操作系统遗留下来的,在win32中以及其他的32位操作系统中, long指针和near指针及far修饰符都是为了兼容 ...

  9. QModelIndex有internalPointer()函数,可以存任何数据,另有QAbstractItemModel::createIndex来创造节点

    整个model的节点数据,都靠它来记录了. 另有一个创造节点的函数(自带函数): QModelIndex QAbstractItemModel::createIndex(int arow, int a ...

  10. 网页 HTML

    HTML--超文本标记语言Hyper Text Markup Language. 一,常规标签 (1)格式控制(记忆模型--Word工具栏) <b></b>加粗,<i&g ...