Problem Description
When ?? was born, seven crows flew in and stopped beside him. In its childhood, ?? had been unfortunately fall into the sea. While it was dying, seven dolphins arched its body and sent it back to the shore. It is said that ?? used to surrounded by 7 candles when he faced a extremely difficult problem, and always solve it in seven minutes.
??
once wrote an autobiography, which mentioned something about himself.
In his book, it said seven is his favorite number and he thinks that a
number can be divisible by seven can bring him good luck. On the other
hand, ?? abhors some other prime numbers and thinks a number x divided
by pi which is one of these prime numbers with a given remainder ai will
bring him bad luck. In this case, many of his lucky numbers are
sullied because they can be divisible by 7 and also has a remainder of
ai when it is divided by the prime number pi.
Now give you a pair of x
and y, and N pairs of ai and pi, please find out how many numbers
between x and y can bring ?? good luck.
 
Input
On the first line there is an integer T(T≤20) representing the number of test cases.
Each test case starts with three integers three intergers n, x, y(0<=n<=15,0<x<y<1018) on a line where n is the number of pirmes.
Following
on n lines each contains two integers pi, ai where pi is the pirme and
?? abhors the numbers have a remainder of ai when they are divided by
pi.
It is guranteed that all the pi are distinct and pi!=7.
It is also guaranteed that p1*p2*…*pn<=1018 and 0<ai<pi<=105for every i∈(1…n).
 
Output
For each test case, first output "Case #x: ",x=1,2,3...., then output the correct answer on a line.
 
Sample Input
2
2 1 100
3 2
5 3
0 1 100
 
Sample Output
Case #1: 7
Case #2: 14
 
 
Hint

For Case 1: 7,21,42,49,70,84,91 are the seven numbers.
For Case2: 7,14,21,28,35,42,49,56,63,70,77,84,91,98 are the fourteen numbers.

 
说出来你可能不信,现在我要分析这个问题,我的博客从来就不会有代码,除了模板代码,,,,
题意: 不懂的看看。。。
就是X-Y 中的除以pi,余数不能为ai,求这样的所有的数,,,
现在我再想的是是不是把所有的整除7的都算出来, 然后|!A1∩!A2∩......∩!An|  = sum-奇数的+偶数的组合,,就是典型的容斥原理啊。。。
!A1使我们要求的东西,,不如让!A1代表除以pi,余数不为ai的东西,然后A1就是代表除以pi余数=ai的情况。
sum=y/7-(x-1)/7;   然后我们现在的重中之重就是求A1 这个东西怎么求,,,,我们注意到的东西就是0<pi<1e5;  但是我们发现了一个小小点的问题,,,
如果x%p[i]=y; 这个y在前面出现过那么的话 ,我们设前一个modp[i]=y的数为s,那么(x+7)%p[i]=(s+7)%p[i]; 所以我们可以在1e5的时间找到modp[i]=a[i]的数,因为这个东西是有周期的啊、、、然后发现我好想发现的没有用的东西,然后这个题还是做不出来,然后就是看别人的代码想到了中国剩余定理,然后这个题好像还有一个小的trick ,就是说乘的时候会爆longlong 这他妈的就尴尬啊。。。然后根据我的判断现在只能二分乘法了。。。。
 
 
 
 
 
 
 
 
 
 

Lucky7(容斥原理)的更多相关文章

  1. HDU 5768 Lucky7 容斥原理+中国剩余定理(互质)

    分析: 因为满足任意一组pi和ai,即可使一个“幸运数”被“污染”,我们可以想到通过容斥来处理这个问题.当我们选定了一系列pi和ai后,题意转化为求[x,y]中被7整除余0,且被这一系列pi除余ai的 ...

  2. HDU 5768:Lucky7(中国剩余定理 + 容斥原理)

    http://acm.hdu.edu.cn/showproblem.php?pid=5768 Lucky7 Problem Description   When ?? was born, seven ...

  3. 【中国剩余定理】【容斥原理】【快速乘法】【数论】HDU 5768 Lucky7

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5768 题目大意: T组数据,求L~R中满足:1.是7的倍数,2.对n个素数有 %pi!=ai  的数 ...

  4. HDU 5768 Lucky7 (容斥原理 + 中国剩余定理 + 状态压缩 + 带膜乘法)

    题意:……应该不用我说了,看起来就很容斥原理,很中国剩余定理…… 方法:因为题目中的n最大是15,使用状态压缩可以将所有的组合都举出来,然后再拆开成数组,进行中国剩余定理的运算,中国剩余定理能够求出同 ...

  5. HDU 5768 Lucky7(CRT+容斥原理)

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=5768 [题目大意] 求出一个区间内7的倍数中,对于每个ai取模不等于bi的数的个数. [题解] 首 ...

  6. HDU 5768 Lucky7 (中国剩余定理 + 容斥 + 快速乘法)

    Lucky7 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5768 Description When ?? was born, seven crow ...

  7. hdu-5768 Lucky7(容斥定理+中国剩余定理)

    题目链接: Lucky7 Time Limit: 2000/1000 MS (Java/Others)     Memory Limit: 65536/65536 K (Java/Others) Pr ...

  8. Lucky7(hdu5768)

    Lucky7 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Subm ...

  9. hdu4059 The Boss on Mars(差分+容斥原理)

    题意: 求小于n (1 ≤ n ≤ 10^8)的数中,与n互质的数的四次方和. 知识点: 差分: 一阶差分: 设  则    为一阶差分. 二阶差分: n阶差分:     且可推出    性质: 1. ...

随机推荐

  1. webstorm 激活码

    WebStorm 2016 最新版激活(activation code方式) 注册时,在打开的License Activation窗口中选择“activation code”,在输入框输入下面的注册码 ...

  2. 弹出式菜单(下拉菜单)实现——PopupMenu

    PopupMenu代表弹出式菜单,它会在指定组件上弹出PopupMenu,默认情况下,PopupMenu会显示在该组件的下方或上方.PopupMenu可增加多个菜单项,并可为菜单项增加子菜单. 使用P ...

  3. scale等比缩放才能做到看上去能让线条以中心点展开

    .nav-menu>ul>li>a::before {  background: #333 none repeat scroll 0 0;  bottom: -2px;  conte ...

  4. Chrome Timeline的指标说明:Blocked、Connect、Send、Wait、Receive

    Blocked time includes any pre-processing time (such as cache lookup) and the time spent waiting for ...

  5. 移动App Crash的测试用例设计

    一些通用的触发移动App Crash的测试场景,如下: 1. 验证在有不同的屏幕分辨率, 操作系统 和运营商的多个设备上的App行为. 2. 用新发布的操作系统版本验证App的行为. 3. 验证在如隧 ...

  6. php 中 php-fpm 的重启、终止操作命令

    php-fpm没有启动nginx会报502的错误 php 5.3.3 下的php-fpm 不再支持 php-fpm 以前具有的 /usr/local/php/sbin/php-fpm (start|s ...

  7. 网站安全配置(Nginx)防止网站被攻击(包括使用了CDN加速之后的配置方法)

    原文链接:http://www.bzfshop.net/article/176.html 网站被攻击是一个永恒不变的话题,网站攻击的方式也是一个永恒不变的老套路.找几百个电脑(肉鸡),控制这些电脑同时 ...

  8. Java线程: 线程调度

    线程调度是Java多线程的核心,只有好的调度,才能充分发挥系统的性能,提高程序的执行效率. 一.休眠 休眠的目的是使线程让出CPU的最简单做法,线程休眠的时候,会将CPU交给其他线程,以便轮换执行,休 ...

  9. JSP/Servlet(一)

    JSP/Servlet(一)   Web应用和web.xml文件: 一.构建Web应用: 1.在任意目录下创建一个文件夹. 2.在第1步所建的文件夹内建一个WEB-INF文件夹(注意大小写). 3.进 ...

  10. js数组快速排序

    <script type="text/javascript"> var arr = [1, 2, 3, 54, 22, 1, 2, 3]; function quick ...