开源Math.NET基础数学类库使用(08)C#进行数值积分
原文:【原创】开源Math.NET基础数学类库使用(08)C#进行数值积分
本博客所有文章分类的总目录:http://www.cnblogs.com/asxinyu/p/4288836.html
开源Math.NET基础数学类库使用总目录:http://www.cnblogs.com/asxinyu/p/4329737.html
前言
在数值计算的需求中,数值积分也是比较常见的一个。我们也知道像Matlab,Mathematics等软件的积分求解功能非常高大上,不仅能求解定积分,还能求解不定积分,甚至多重积分等等。而Math.NET这个组件没有如此高级的功能,目前也只提供了比较件的闭区间上的定积分求解功能。今天就一起来看看,因为不定积分涉及到符号计算,因此其背后的原理和实现要复杂得多。就连Matlab这种软件暂时也不支持混编编程求解符号计算相关的功能。
如果本文资源或者显示有问题,请参考 本文原文地址:http://www.cnblogs.com/asxinyu/p/4301017.html
1.定积分
很多人可能已经淡忘了定积分的概念,当然需要用到的朋友看到这里,也基本不用看本段的内容,比较简单,高等数学已经是10多年前学过的东西了,虽然以前很精通,现在也只能凭印象理解和网络来对这个概念稍微进行整理,可能有些不完整或小错误,还请谅解。
数学定义:如果函数f(x)在区间[a,b]上连续,用分点xi将区间[a,b]分为n 个小区间,在每个小区间[xi-1,xi]上任取一点ri(i=1,2,3„,n) ,作和式f(r1)+...+f(rn) ,当n趋于无穷大时,上述和式无限趋近于某个常数A,这个常数叫做y=f(x) 在区间上的定积分. 记作/ab f(x) dx 即 /ab f(x) dx =limn>00 [f(r1)+...+f(rn)], 这里,a 与 b叫做积分下限与积分上限,区间[a,b] 叫做积分区间,函数f(x) 叫做被积函数,x 叫做积分变量,f(x)dx 叫做被积式。
几何定义:可以理解为在 Oxy坐标平面上,由曲线y=f(x)与直线x=a,x=b以及x轴围成的曲边梯形的面积值(一种确定的实数值)。
详细的可以参考以下链接:
定积分的计算公式和性质:http://www.shuxuecheng.com/gaosuzk/content/lljx/wzja/5/5-2.htm
2.Math.NET关于定积分的实现
Math.NET中对定积分的实现都在MathNet.Numerics.Integration命名空间以及Integrate.cs中,Integrate静态类其实是对Integration命名空间下几个近似积分方法的实现。Math.NET定积分的近似求解主要是用到了“梯形法则”,详细的内容可以参考以下:链接,其原理非常简单。这里我们只介绍经常用到的Integrate静态类的实现,很简单,其他内部实现过程可以查源码:
using System;
using MathNet.Numerics.Integration; namespace MathNet.Numerics
{
/// <summary>
/// 数值积分类
/// </summary>
public static class Integrate
{
/// <summary>
/// 近似解析光滑函数在闭区间上的定积分
/// </summary>
/// <param name="f">The analytic smooth function to integrate.</param>
/// <param name="intervalBegin">Where the interval starts, inclusive and finite.</param>
/// <param name="intervalEnd">Where the interval stops, inclusive and finite.</param>
/// <param name="targetAbsoluteError">The expected relative accuracy of the approximation.</param>
/// <returns>Approximation of the finite integral in the given interval.</returns>
public static double OnClosedInterval(Func<double, double> f, double intervalBegin, double intervalEnd, double targetAbsoluteError)
{
return DoubleExponentialTransformation.Integrate(f, intervalBegin, intervalEnd, targetAbsoluteError);
} /// <summary>
/// 近似解析光滑函数在闭区间上的定积分
/// </summary>
/// <param name="f">The analytic smooth function to integrate.</param>
/// <param name="intervalBegin">Where the interval starts, inclusive and finite.</param>
/// <param name="intervalEnd">Where the interval stops, inclusive and finite.</param>
/// <returns>Approximation of the finite integral in the given interval.</returns>
public static double OnClosedInterval(Func<double, double> f, double intervalBegin, double intervalEnd)
{
return DoubleExponentialTransformation.Integrate(f, intervalBegin, intervalEnd, 1e-);
}
}
}
下面的例子就是直接调用该类进行的。
3.C#使用Math.NET求解定积分的例子
使用比较简单,直接看源码:
// 1. Integrate x*x on interval [0, 10]
Console.WriteLine(@"1.函数 x*x 在闭区间 [0, 10] 上的积分");
var result = Integrate.OnClosedInterval(x => x * x, , );
Console.WriteLine(result);
Console.WriteLine(); // 2. Integrate 1/(x^3 + 1) on interval [0, 1]
Console.WriteLine(@"2.函数 1/(x^3 + 1) 在闭区间 [0, 1] 上的积分");
result = Integrate.OnClosedInterval(x => / (Math.Pow(x, ) + ), , );
Console.WriteLine(result);
Console.WriteLine(); // 3. Integrate f(x) = exp(-x/5) (2 + sin(2 * x)) on [0, 10]
Console.WriteLine(@"3.函数 f(x) = exp(-x/5) (2 + sin(2 * x)) 在 [0, 10]上的积分");
result = Integrate.OnClosedInterval(x => Math.Exp(-x / ) * ( + Math.Sin( * x)), , );
Console.WriteLine(result);
Console.WriteLine(); // 4. Integrate target function with absolute error = 1E-4
Console.WriteLine(@"4. 对目标函数进行积分,绝对误差= 1E-4 ,区间 [0, 10]");
Console.WriteLine(@"public static double TargetFunctionA(double x)
{
return Math.Exp(-x / 5) * (2 + Math.Sin(2 * x));
}");
result = Integrate.OnClosedInterval(TargetFunctionA, , , 1e-);
Console.WriteLine(result);
Console.WriteLine();
参数主要有3个:函数,积分下限,积分上限,其他的就是附带一个绝对误差了,看看运行结果:
.函数 x*x 在闭区间 [, ] 上的积分
333.333333333332 .函数 /(x^ + ) 在闭区间 [, ] 上的积分
0.835648848264702 .函数 f(x) = exp(-x/) ( + sin( * x)) 在 [, ]上的积分
10.4950494839272 . 对目标函数进行积分,绝对误差= 1E- ,区间 [, ]
public static double TargetFunctionA(double x)
{
return Math.Exp(-x / ) * ( + Math.Sin( * x));
}
10.4950494839276
4.资源
源码下载:http://www.cnblogs.com/asxinyu/p/4264638.html
如果本文资源或者显示有问题,请参考 本文原文地址:http://www.cnblogs.com/asxinyu/p/4301017.html
开源Math.NET基础数学类库使用(08)C#进行数值积分的更多相关文章
- 【原创】开源Math.NET基础数学类库使用(08)C#进行数值积分
本博客所有文章分类的总目录:[总目录]本博客博文总目录-实时更新 开源Math.NET基础数学类库使用总目录:[目录]开源Math.NET基础数学类库使用总目录 前言 ...
- 【目录】开源Math.NET基础数学类库使用总目录
本博客所有文章分类的总目录链接:[总目录]本博客博文总目录-实时更新 1.开源Math.NET数学组件文章 1.开源Math.NET基础数学类库使用(01)综合介绍 2.开源Math.NET ...
- 【原创】开源Math.NET基础数学类库使用(01)综合介绍
本博客所有文章分类的总目录:[总目录]本博客博文总目录-实时更新 开源Math.NET基础数学类库使用总目录:[目录]开源Math.NET基础数学类库使用总目录 前言 ...
- 【原创】开源Math.NET基础数学类库使用(02)矩阵向量计算
本博客所有文章分类的总目录:[总目录]本博客博文总目录-实时更新 开源Math.NET基础数学类库使用总目录:[目录]开源Math.NET基础数学类库使用总目录 前言 ...
- 【原创】开源Math.NET基础数学类库使用(03)C#解析Matlab的mat格式
本博客所有文章分类的总目录:[总目录]本博客博文总目录-实时更新 开源Math.NET基础数学类库使用总目录:[目录]开源Math.NET基础数学类库使用总目录 前言 ...
- 【原创】开源Math.NET基础数学类库使用(04)C#解析Matrix Marke数据格式
本博客所有文章分类的总目录:[总目录]本博客博文总目录-实时更新 开源Math.NET基础数学类库使用总目录:[目录]开源Math.NET基础数学类库使用总目录 前言 ...
- 【原创】开源Math.NET基础数学类库使用(05)C#解析Delimited Formats数据格式
本博客所有文章分类的总目录:[总目录]本博客博文总目录-实时更新 开源Math.NET基础数学类库使用总目录:[目录]开源Math.NET基础数学类库使用总目录 前言 ...
- 【原创】开源Math.NET基础数学类库使用(06)直接求解线性方程组
本博客所有文章分类的总目录:[总目录]本博客博文总目录-实时更新 开源Math.NET基础数学类库使用总目录:[目录]开源Math.NET基础数学类库使用总目录 前言 ...
- 【原创】开源Math.NET基础数学类库使用(07)常用的数学物理常数
本博客所有文章分类的总目录:[总目录]本博客博文总目录-实时更新 开源Math.NET基础数学类库使用总目录:[目录]开源Math.NET基础数学类库使用总目录 1.前 ...
随机推荐
- poj3254(状压dp)
题目连接:http://poj.org/problem?id=3254 题意:一个矩阵里有很多格子,每个格子有两种状态,可以放牧和不可以放牧,可以放牧用1表示,否则用0表示,在这块牧场放牛,要求两个相 ...
- iBeacon怎样工作
原文地址 iBeacons iBeacons近期是一个趋势的话题,它们同意室内定位,让你的电话知道你在基站的范围.这个能有很多应用:在停车场帮你找到你的车,零售商通过优惠券和基于位置的特别优惠,以至很 ...
- xml(3)--dom4j实现crud操作
1.XML解析技术概述 (1)XML解析方式分为两种:dom和sax dom:(Document Object Model, 即文档对象模型) 是 W3C 组织推荐的处理 XML 的一种标准方 ...
- 浅谈JAVA ThreadPoolExecutor(转)
这篇文章分为两部分,前面是ThreadPoolExecutor的一些基本知识,后一部分则是Mina中一个特殊的ThreadPoolExecutor代码解析.算是我的Java学习笔记吧. 基础 在我看来 ...
- hdu1561(树形dp)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1561 题意:n座城堡,每个里面都有宝物,要求在你可以攻占m个城堡得到的最多的宝物,但是如果要攻破一个城 ...
- java获取日期之间的差异
转载请注明出处.谢谢http://blog.csdn.net/harryweasley/article/details/42121485 当想到要计算差值.我们肯定想的是"2014.12.1 ...
- U10vim程序编辑器
vim需要多加练习. 1.你可以将vim视为vi的高级版本.vi分成三种模式:一般模式,编辑模式和命令行模式. 一般模式:以vi打开一个文件就直接进入一般模式了(这也是默认的模式).在这个模式中,你可 ...
- ecshop首页调用指定分类的所有产品(指定一级调二级)
第一种方法 第一 在/includes/lib_goods.php下增加如下代码,用过网上的直接换掉就可以 function index_get_cat_id_goods_best_list($cat ...
- Thread Dump 和Java应用诊断(转)
Thread Dump 和Java应用诊断 Thread Dump是非常有用的诊断Java应用问题的工具,每一个Java虚拟机都有及时生成显示所有线程在某一点状态的thread-dump的能力.虽然各 ...
- 隐马尔科夫模型(HMM)及事实上现
马尔科夫模型 马尔科夫模型是单重随机过程,是一个2元组:(S,A). 当中S是状态集合,A是状态转移矩阵. 仅仅用状态转移来描写叙述随机过程. 马尔科夫模型的2个如果 有限历史性如果:t+l时刻系统状 ...