#include<cstdio>
#include<cstdlib>
#include<iostream>
#include<algorithm> using namespace std;
/*dp,poj1080*/ int dp[][];//动态规划数据存放
int map[][];//用来存放原始数据 void map_init()
{
map['A']['A']=map['C']['C']=map['G']['G']=map['T']['T']=;
map['A']['C']=map['C']['A']=map['A']['T']=map['T']['A']=map['T'][' ']=map[' ']['T']=-;
map['A']['G']=map['G']['A']=map['C']['T']=map['T']['C']=map['G']['T']=map['T']['G']=map['G'][' ']=map[' ']['G']=-;
map['A'][' ']=map[' ']['A']=map['G']['C']=map['C']['G']=-;
map['C'][' ']=map[' ']['C']=-;
} int max_X3(int a,int b,int c)
{
if(a>b)
{
if(a>c)
return a;
else
return c;
}
else
{
if(b>c)
return b;
else
return c;
}
} int main()
{
int y;//全局次数
int i,j;//循环变量
int a,b;//用户输入
char str1[];
char str2[]; //初始化
map_init(); cin>>y;
while (y--)
{
scanf("%d %s",&a,str1);
scanf("%d %s",&b,str2); //初始化第一行第一列
dp[][]=;
for (i = ; i < a; i++)
dp[][i+] = dp[][i] + map[str1[i]][' ']; for (j = ; j < b; j++)
dp[j+][] = dp[j][] + map[str2[j]][' ']; for (i = ; i <= a; i++)
{
for (j = ; j <= b; j++)
{
dp[j][i] = max_X3(dp[j-][i-]+map[str2[j-]][str1[i-]],
dp[j-][i]+map[str2[j-]][' '],
dp[j][i-]+map[str1[i-]][' ']);
}
} cout<<dp[b][a]<<endl;
}
return ;
}

先上代码,然后说明。

首先对于动态规划到现在的理解,只是现阶段的理解。动态规划下面用dp代替。

要点:

1、一个问题可以被分成多个相同的子问题,子问题和原问题差别只有数据规模,总结就是大化小。

2、这个问题的解可以由子问题的解得出,总结就是用已经有的小解得出最后的解。

3、经常用一个二维数组去保存已经求出的解,之后要是用到就可以直接取不用计算,总结就是记录已经解过的方程的解,不做相同的无用功。

4、状态转移方程,其中的状态,初始值,这些都要考虑清楚。

对于模型,等我做过10道题目熟练之后再说吧,现在给出还为时过早。

题目:

首先明确状态,问问自己两个字符串对比有几种状态?下面用AB两个字符表示两个字符串

1、A的这个字母和B相同

2、A的这个字母和B不同,A和-对应

3、A的这个字母和B不同,B和-对应

最后出来的两个字符串一定是满足这个规则的。只有这三种状态。

那么状态转移方程呢?

1、明确目的,我们要求的是匹配的最后数字上面越大越好。

2、两个字母相同,那么是+5,其他都要减一个数,那么问题来了,这里千万不要以为相同就是最好的,如果这里认为相同就是最好的,那么你用的是贪心而不是dp了。

3、我们取之前的解为Y1,Y2,Y3,123对应上面三个状态,max(Y1+5,Y2-5,Y3-5)这里5是个虚数,可能是0也可能是负数。

4、要注意的有两点,第一,这个状态的之前那个状态的解,是不同的!如下面所示,如果我们处理第二个字符时候可能出现之前的情况就有下面三种

ATGC

GGGG

ATGC

-GGGG

-ATGC

GGGG

第二,Y1,Y2,Y3,是不同的,所以要取这三个值得max。

那么初始值呢?

初始值一般是二维数组的0行0列,这里要注意的是,这里的初始值不全是0,看看下面的情况

ATGC - - - -

- - - -GGGG

所以初始值应该是每一个字母都和空对应,而且要在之前那个值加上去,之前A和空对应如果是-3,那么T和空对应如果是-1,在二维数组中T这里的值应该是-4

最后输出二维数组中最右下角的值就是最后的解。

这里灵活之处是利用一个二维数组去保存了两个字母之间的关系,所以看起来代码特别清晰。

之后会对动态规划再细说的,这次就说这么多。

动态规划1-----------poj1080的更多相关文章

  1. POJ1080 Human Gene Functions 动态规划 LCS的变形

    题意读了半年,唉,给你两串字符,然后长度不同,你能够用'-'把它们补成同样长度,补在哪里取决于得分,它会给你一个得分表,问你最大得分 跟LCS非常像的DP数组 dp[i][j]表示第一个字符串取第i个 ...

  2. 【poj1080】 Human Gene Functions

    http://poj.org/problem?id=1080 (题目链接) 题意 给出两个只包含字母ACGT的字符串s1.s2,可以在两个字符串中插入字符“-”,使得s1与s2的相似度最大. Solu ...

  3. 增强学习(三)----- MDP的动态规划解法

    上一篇我们已经说到了,增强学习的目的就是求解马尔可夫决策过程(MDP)的最优策略,使其在任意初始状态下,都能获得最大的Vπ值.(本文不考虑非马尔可夫环境和不完全可观测马尔可夫决策过程(POMDP)中的 ...

  4. 简单动态规划-LeetCode198

    题目:House Robber You are a professional robber planning to rob houses along a street. Each house has ...

  5. 动态规划 Dynamic Programming

    March 26, 2013 作者:Hawstein 出处:http://hawstein.com/posts/dp-novice-to-advanced.html 声明:本文采用以下协议进行授权: ...

  6. 动态规划之最长公共子序列(LCS)

    转自:http://segmentfault.com/blog/exploring/ LCS 问题描述 定义: 一个数列 S,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则 ...

  7. C#动态规划查找两个字符串最大子串

     //动态规划查找两个字符串最大子串         public static string lcs(string word1, string word2)         {            ...

  8. C#递归、动态规划计算斐波那契数列

    //递归         public static long recurFib(int num)         {             if (num < 2)              ...

  9. 动态规划求最长公共子序列(Longest Common Subsequence, LCS)

    1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...

随机推荐

  1. matlab里的nargin

    nargin是用来判断输入变量个数的函数,这样就可以针对不同的情况执行不同的功能.

  2. C#整理 条件语句

    条件语句主要分为if else语句和switch case语句. if else语句主要分为四种格式: 1. if(表达式) {} 2.二选一 if(表达式) {} else {} 3.多选一 if( ...

  3. 斯坦福大学公开课:iOS 7应用开发 笔记

    2015-07-06 第一讲   课务.iOS概述 -------------------------------------------------- 开始学习斯坦福大学公开课:iOS 7应用开发留 ...

  4. WPF类层次结构

    WPF类层次结构 System.Threading.DispatcherObject类 WPF应用程序使用STA(Single Thread Affinity)模型,整个用户界面由一个单独的线程拥有, ...

  5. mac中Eclipse的快捷键

    查看某个类:command + shift +T 快速查看源代码中方法: command + o 选中某个类,command + t:查看此类的父类和子类 如果要导入一个类所在的包名,可以选中这个类, ...

  6. Activity LauchMode启动模式(转载)

    转载于:http://www.cnblogs.com/plokmju/p/android_ActivityLauncherMode.html 在一个Android应用中,不可避免的会包含多个Activ ...

  7. Windows server 2008搭建php运行环境

    下载php组件包 首先到http://windows.php.net/download/下载你需要的php版本,这里我下载的是php5.3. 下面解压php组件 包到磁盘上. 安装Microsoft ...

  8. LeetCode OJ 96. Unique Binary Search Trees

    Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For examp ...

  9. android网络编程之HttpUrlConnection的讲解--GET请求

    1.服务器后台使用Servlet开发,这里不再介绍. 2.测试机通过局域网链接到服务器上,可以参考我的博客:http://www.cnblogs.com/begin1949/p/4905192.htm ...

  10. webapp前端开发软键盘与position:fixed为我们带来的不便

    前提:我们考虑兼容的环境为android和ios两种智能手机 兼容环境测试结果显示android的表现明显好于ios,ios手机在软键盘呼起收起时存在着很严重的兼容性问题 场景展示: 页面正常状态 软 ...