[Hadoop in Action] 第4章 编写MapReduce基础程序
- 基于hadoop的专利数据处理示例
- MapReduce程序框架
- 用于计数统计的MapReduce基础程序
- 支持用脚本语言编写MapReduce程序的hadoop流式API
- 用于提升性能的Combiner
import java.io.IOException;
import java.util.Iterator; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.FileInputFormat;
import org.apache.hadoop.mapred.FileOutputFormat;
import org.apache.hadoop.mapred.JobClient;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.KeyValueTextInputFormat;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.Mapper;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reducer;
import org.apache.hadoop.mapred.Reporter;
import org.apache.hadoop.mapred.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner; public class MyJob extends Configured implements Tool { public static class MapClass extends MapReduceBase
implements Mapper<Text, Text, Text, Text> { public void map(Text key, Text value,
OutputCollector<Text, Text> output,
Reporter reporter) throws IOException { output.collect(value, key);
}
} public static class Reduce extends MapReduceBase
implements Reducer<Text, Text, Text, Text> { public void reduce(Text key, Iterator<Text> values,
OutputCollector<Text, Text> output,
Reporter reporter) throws IOException { String csv = "";
while (values.hasNext()) {
if (csv.length() > 0) csv += ",";
csv += values.next().toString();
}
output.collect(key, new Text(csv));
}
} public int run(String[] args) throws Exception {
Configuration conf = getConf(); JobConf job = new JobConf(conf, MyJob.class); Path in = new Path(args[0]);
Path out = new Path(args[1]);
FileInputFormat.setInputPaths(job, in);
FileOutputFormat.setOutputPath(job, out); job.setJobName("MyJob");
job.setMapperClass(MapClass.class);
job.setReducerClass(Reduce.class); job.setInputFormat(KeyValueTextInputFormat.class);
job.setOutputFormat(TextOutputFormat.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
job.set("key.value.separator.in.input.line", ","); JobClient.runJob(job); return 0;
} public static void main(String[] args) throws Exception {
int res = ToolRunner.run(new Configuration(), new MyJob(), args); System.exit(res);
}
}
|
选项
|
描述
|
| -conf <configuration file> | 指定一个配置文件 |
| -D <property=value> | 给JobConf属性赋值 |
| -fs <local | namenode:port> | 指定一个NameNode,可以是“local” |
| -jt <local | jobtracker:port> | 指定一个JobTracker |
| -files <list of files> | 指定一个以逗号分隔的文件列表,用于MapReduce作业。这些文件自动地分布到所有节点,使之可从本地获取 |
| -libjars <list of jars> | 指定一个以逗号分隔的jar文件列表,使之包含在所有任务JVM的classpath中 |
| -archives <list of archives> | 指定一个以逗号分隔的存档文件列表,使之可以在所有任务节点上打开 |
- 编写MapReduce程序的第一步是了解数据流;
- 基于对数据流的理解,可以为输入、中间结果、输出的键/值对k1、v1、k2、v2、k3和v3设定类型;
- 根据数据流河数据类型,很容易能够理解程序代码。
import java.io.IOException;
import java.util.Iterator; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.FileInputFormat;
import org.apache.hadoop.mapred.FileOutputFormat;
import org.apache.hadoop.mapred.JobClient;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.KeyValueTextInputFormat;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.Mapper;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reducer;
import org.apache.hadoop.mapred.Reporter;
import org.apache.hadoop.mapred.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner; public class CitationHistogram extends Configured implements Tool { public static class MapClass extends MapReduceBase
implements Mapper<Text, Text, IntWritable, IntWritable> { private final static IntWritable uno = new IntWritable(1);
private IntWritable citationCount = new IntWritable(); public void map(Text key, Text value,
OutputCollector<IntWritable, IntWritable> output,
Reporter reporter) throws IOException { citationCount.set(Integer.parseInt(value.toString()));
output.collect(citationCount, uno);
}
} public static class Reduce extends MapReduceBase
implements Reducer<IntWritable,IntWritable,IntWritable,IntWritable>
{ public void reduce(IntWritable key, Iterator<IntWritable> values,
OutputCollector<IntWritable, IntWritable>output,
Reporter reporter) throws IOException { int count = 0;
while (values.hasNext()) {
count += values.next().get();
}
output.collect(key, new IntWritable(count));
}
} public int run(String[] args) throws Exception {
Configuration conf = getConf(); JobConf job = new JobConf(conf, CitationHistogram.class); Path in = new Path(args[0]);
Path out = new Path(args[1]);
FileInputFormat.setInputPaths(job, in);
FileOutputFormat.setOutputPath(job, out); job.setJobName("CitationHistogram");
job.setMapperClass(MapClass.class);
job.setReducerClass(Reduce.class); job.setInputFormat(KeyValueTextInputFormat.class);
job.setOutputFormat(TextOutputFormat.class);
job.setOutputKeyClass(IntWritable.class);
job.setOutputValueClass(IntWritable.class); JobClient.runJob(job); return 0;
} public static void main(String[] args) throws Exception {
int res = ToolRunner.run(new Configuration(),
new CitationHistogram(),
args); System.exit(res);
}
}
import java.io.IOException;
import java.util.Iterable; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner; public class MyJob extends Configured implements Tool { public static class MapClass extends Mapper<LongWritable, Text, Text, Text> { public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { String[] citation = value.toString().split(",");
context.write(new Text(citation[1]), new Text(citation[0]));
}
} public static class Reduce extends Reducer<Text, Text, Text, Text> { public void reduce(Text key, Iterable<Text> values, Context context) throws IOException, InterruptedException { String csv = "";
for (Text val:values) { //Iterable类型允许foreach循环
if (csv.length() > 0) csv += ",";
csv += val.toString();
} context.write(key, new Text(csv));
}
} public int run(String[] args) throws Exception {
Configuration conf = getConf(); Job job = new Job(conf, "MyJob");
job.setJarByClass(MyJob.class); Path in = new Path(args[0]);
Path out = new Path(args[1]);
FileInputFormat.setInputPaths(job, in);
FileOutputFormat.setOutputPath(job, out); job.setMapperClass(MapClass.class);
job.setReducerClass(Reduce.class); job.setInputFormatClass(TextInputFormat.class); //兼容的InputFormat类
job.setOutputFormatClass(TextOutputFormat.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class); System.exit(job.waitForCompletion(true)?0:1); return 0;
} public static void main(String[] args) throws Exception {
int res = ToolRunner.run(new Configuration(), new MyJob(), args); System.exit(res);
}
}
- 通过Unix命令使用Streaming
- 通过脚本使用Streaming
- 用Streaming处理键/值对
- 通过Aggregate包使用Streaming
[Hadoop in Action] 第4章 编写MapReduce基础程序的更多相关文章
- 第 3 章 编写 PAM 应用程序和服务
Solaris 开发者安全性指南 Previous: 第 2 章 开发特权应用程序 Next: 第 4 章 编写使用 GSS-API 的应用程序 第 3 章 编写 PAM 应用程序和服务 可插拔验证模 ...
- [Hadoop in Action] 第5章 高阶MapReduce
链接多个MapReduce作业 执行多个数据集的联结 生成Bloom filter 1.链接MapReduce作业 [顺序链接MapReduce作业] mapreduce-1 | mapr ...
- [Hadoop in Action] 第7章 细则手册
向任务传递定制参数 获取任务待定的信息 生成多个输出 与关系数据库交互 让输出做全局排序 1.向任务传递作业定制的参数 在编写Mapper和Reducer时,通常会想让一些地方可以配 ...
- [Hadoop in Action] 第1章 Hadoop简介
编写可扩展.分布式的数据密集型程序和基础知识 理解Hadoop和MapReduce 编写和运行一个基本的MapReduce程序 1.什么是Hadoop Hadoop是一个开源的框架,可编写和运 ...
- [Hadoop in Action] 第6章 编程实践
Hadoop程序开发的独门绝技 在本地,伪分布和全分布模式下调试程序 程序输出的完整性检查和回归测试 日志和监控 性能调优 1.开发MapReduce程序 [本地模式] 本地模式 ...
- [hadoop in Action] 第3章 Hadoop组件
管理HDFS中的文件 分析MapReduce框架中的组件 读写输入输出数据 1.HDFS文件操作 [命令行方式] Hadoop的文件命令采取的形式为: hadoop fs -cmd < ...
- [Hadoop in Action] 第2章 初识Hadoop
Hadoop的结构组成 安装Hadoop及其3种工作模式:单机.伪分布和全分布 用于监控Hadoop安装的Web工具 1.Hadoop的构造模块 (1)NameNode(名字节点) ...
- 《Hadoop权威》学习笔记五:MapReduce应用程序
一.API的配置---Configuration类 API的配置:Hadoop提供了专门的API对资源进行配置,Configuration类的实例(在org.apache.hadoop.conf包)包 ...
- 编写mapreduce的程序的套路
https://blog.csdn.net/qq_42881421/article/details/83543926 给出下面6个经典案例: http://www.cnblogs.com/xia520 ...
随机推荐
- salesforce 零基础学习(五十八)通过sObject的field返回其对应的基础类型
项目中有时候会要求通过sObject的Field的type类型返回其对应的基本类型,然后对其进行相关的处理,创建sObject的field可以选择的type类型是固定多的. 上述类型可以转换成几种基本 ...
- Python标准模块--threading
1 模块简介 threading模块在Python1.5.2中首次引入,是低级thread模块的一个增强版.threading模块让线程使用起来更加容易,允许程序同一时间运行多个操作. 不过请注意,P ...
- 初识AngularJS 之 HelloWorld和数据绑定
1.Hello World 我用的开发工具是 atom ,大家有需要的话可以找我要安装包嘻嘻 第一步: 写入以下代码: <!DOCTYPE html> <html ng-ap ...
- Android消息传递之组件间传递消息
前言: 上篇学习总结了Android通过Handler消息机制实现了工作线程与UI线程之间的通信,今天来学习一下如何实现组件之间的通信.本文依然是为学习EventBus做铺垫,有对比才能进步,今天主要 ...
- SQLServer学习笔记系列1
一.前言 一直自己没有学习做笔记的习惯,所以为了加强自己对知识的深入理解,决定将学习笔记写下来,希望向各位大牛们学习交流! 不当之处请斧正!在此感谢!这边就先从学习Sqlserver写起,自己本身对数 ...
- 自己封装了一个EF的上下文类.,分享一下,顺便求大神指点
using System; using System.Collections.Generic; using System.Configuration; using System.Data; using ...
- ASP.NET Core 介绍
原文:Introduction to ASP.NET Core 作者:Daniel Roth.Rick Anderson.Shaun Luttin 翻译:江振宇(Kerry Jiang) 校对:许登洋 ...
- ASP.NET 截获服务器生成的将要发送到客户端的html的方法
有时候我们需要在将服务器端生成的html发送带客户端之前对这些html进行操作,比如生成静态html加之保存.改变生成的html中的某些内容等等,那么久可以通过如下的方案解决. 我总结了两种方式,个人 ...
- GO语言之channel
前言: 初识go语言不到半年,我是一次偶然的机会认识了golang这门语言,看到他简洁的语法风格和强大的语言特性,瞬间有了学习他的兴趣.我是很看好go这样的语言的,一方面因为他有谷歌主推,另一方面他确 ...
- Keil> 编译器特有的功能 > 关键字和运算符 > __weak
__weak 此关键字指示编译器弱导出符号. 可以将 __weak 关键字应用于函数和变量声明以及函数定义. 用法 函数和变量声明 对于声明,此存储类指定一个 extern 对象声明,即使不存在,也不 ...